Skip to main content
Log in

Reconstructing air temperature at eleven remote alpine and arctic lakes in Europe from 1781 to 1997 AD

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Pristine and sensitive environments, such as remote alpine and arctic lakes, are particularly susceptible to the effects of climate change. However, these remote environments do not have sufficiently long instrumental climate records to support studies on contemporary climate change. The issue of the scarcity of instrumental climate data at remote regions is addressed by reconstructing monthly mean air temperatures from 1781 to 1997 AD at eleven remote alpine and arctic lakes in Europe, as part of the MOuntain LAke Research (MOLAR) project. Stepwise multiple regression is applied to establish linear transfer functions of temperatures between each of eleven upland records and twenty homogenised long lowland records. Twelve monthly transfer functions are obtained for each lake. The skill of these transfer functions is found to range typically between 60 and 99%. The lower skill values generally correspond to winter months. The temperature reconstructions obtained using the transfer functions need to be corrected with vertical temperature gradients. Air-temperature lapse rates were obtained for each lake region by spatial interpolation of radiosonde air-temperature data (1990–1997). The resulting reconstructions at each lake were checked using air-temperature data (1996–1997) from automatic weather stations installed at the lakes during the MOLAR project. We estimate the typical reconstruction errors to be about 1.3 °C for low-sun months and about 0.98 °C for high-sun months. Trend analyses on the reconstructed annual mean air temperatures at the lakes show two distinct types of trends for the 19th and 20th centuries. During the period 1801–1900, the western European lakes show no significant trend whereas annual mean air temperatures at the eastern European lakes decrease significantly. The period 1901–1997 presents a warming trend at all but the Fennoscandian lakes. Our results are in good agreement with previous studies on the spatial distribution and magnitude of temperature change in Europe. Principal component analysis performed on the reconstructed annual mean air temperature reveals two different regimes of trends for the past two centuries. It also allows a regional clustering of the inter-annual variability of air temperature at the lakes to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agustí-Panareda, A., R. Thompson & D. M. Livingstone, 2000. Reconstructing temperature variations at high elevation lake sites in Europe during the instrumental period. Vehr. Int. Verein. Limnol. 27: 479-483.

    Google Scholar 

  • Akaike, H., 1974. A new look at statistical model identification. IEEE Transactions on Automatic Control AU-19: 716-722.

    Google Scholar 

  • Alexandersson, H. & A. Moberg, 1997. Homogenization of Swedish temperature data. part i: homogeneity test for linear trends. Int. J. Clim. 17: 25-34.

    Google Scholar 

  • Auer, I. & R. Böhm, 1994. Combined temperature-precipitation variations in Austria during the instrumental period. Theor. Appl. Clim. 49: 161-174.

    Google Scholar 

  • Balling, R., R. Vose & G.-R. Weber, 1998. Analysis of long-term European temperature records: 1751-1995. Clim. Res. 10: 193-200.

    Google Scholar 

  • Barry, R. G., 1992. Mountain weather and climate. Routledge Physical and Environmental Series. 2nd ed. Routledge, London and New York.

    Google Scholar 

  • Beniston, M., 1993. Overview and synthesis of the international conference on mountain environments in changing climates. Bull. Am. Met. Soc. 74: 1075-1079.

    Google Scholar 

  • Beniston, M. & M. Rebetez, 1996. Regional behaviour of minimum temperatures in Switzerland for the period 1979-1993. Theor. Appl. Clim. 53: 231-243.

    Google Scholar 

  • Beniston, M., M. Rebetez, F. Giorgi & M. Marinucci, 1994. An analysis of regional climate change in Switzerland. Theor. Appl. Clim. 49: 135-159.

    Google Scholar 

  • Beniston, M., H. Diaz & R. Bradley, 1997. Climatic change at high elevation sites: An overview. Clim. Change 36: 233-251.

    Google Scholar 

  • Beniston, M., R. Tol, R. Delécolle, G. Hoermann, A. Iglesias, J. Innes, A. McMichael, W. Martens, I. Nemesova, R. Nicholls, F. Toth, S. Kovats, R. Leemans & Z. Stojic, 1998. The Regional Impacts of Climate Change: An Assessment of Vulnerability, Chapter 5. Europe. A Special Report of IPCC Working Group II. Cambridge University Press, 149-185.

  • Bücher, A. & J. Dessens, 1991. Secular trend of surface temperature at an elevated observatory in the Pyrenees. J. Clim. 4: 859-868.

    Google Scholar 

  • Cook, E. R., D. M. Meko, D. W. Stahle & M. K. Cleaveland, 1999. Drought reconstructions for the continental United States. J. Clim. 12: 1145-1162.

    Google Scholar 

  • Dessens, J. & A. Bücher, 1995. Changes in minimum and maximum temperatures at the Pic du Midi in relation with humidity and cloudiness, 1882-1984. Atmos. Res. 37: 147-162.

    Google Scholar 

  • Dessens, J. & A. Bücher, 1997. A critical examination of the precipitation records at the Pic du Midi observatory, Pyrenees, France. Clim. Change 36: 345-353.

    Google Scholar 

  • Diaz, H. & R. Bradley, 1997. Temperature variations during the last century at high elevation sites. Clim. Change 36: 253-279.

    Google Scholar 

  • Frich, P., H. Alexandersson, J. Ashcroft, B. Dahlström, G. Demarée, A. Drebs, A. van Engelen, E. Føland, I. Hanssen-Bauer, R. Heino, T. Jónsson, K. Jonasson, L. Keegan, P. Ø. Nordli, T. Schmith, P. Steffensen, H. Tuomenvirta & O. Tveito, 1995. North Atlantic climatological dataset (nacd version 1)-final report. Technical report, European Commission (DG-XII), Environment Programme Contract (EV5V CT93-0277).

  • Geisser, S., 1975, The predictive sample reuse method with applications. J. Am. Atat. Assoc. 70: 320-328.

    Google Scholar 

  • Gray, B., 1981. On the stability of temperature eigenvector patterns. J. Clim. 1: 273-281.

    Google Scholar 

  • Jones, P. D., M. New, D. E. Parker, S. Martin & I. G. Rigor, 1999. Surface air temperature and its changes over the past 150 years. Rev. Geophys. 37: 173-199.

    Google Scholar 

  • Jones, P., T. Wigley & P. Wright, 1986. Global temperature variations between 1861 and 1984. Nature 322: 430-434.

    Google Scholar 

  • Kozuchowski, K. M., 1993. Variations of hemispheric zonal index since 1899 and its relationships with air temperature. Int. J. Clim. 13: 853-864.

    Google Scholar 

  • Kozuchowski, K., J. Trepinska & J. Wibig, 1994. The air temperature in Kracow from 1826 to 1990. Int. J. Clim. 14: 1035-1049.

    Google Scholar 

  • Livingstone, D. M., 1997. Break-up dates of alpine lakes as proxy data for local and regional mean surface air temperature. Clim. Change 37: 407-439.

    Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the alps. I. climate. J. Paleolim. 18: 395-420.

    Google Scholar 

  • Manley, G., 1949. Fanaraken: The mountain station in Norway. Weather 4: 352-354.

    Google Scholar 

  • Manley, G., 1974. Central England temperatures: monthly means 1659-1973. Q. J. r. Met. Soc. 100: 389-405.

    Google Scholar 

  • Metaxas, D., A. Bartzokas & A. Vitsas, 1991. Temperature fluctuations in the Mediterranean area during the last 120 years. Int. J. Clim. 11: 897-908.

    Google Scholar 

  • Moberg, A. & H. Bergström, 1997. Homogenization of Swedish temperature data, part iii: The long records from Uppsala and Stockholm. Int. J. Clim. 17: 667-699.

    Google Scholar 

  • Palecki, M. A. & R. G. Barry, 1986. Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: a case study for Finland. J. Clim. Appl. Met. 25: 893-902.

    Google Scholar 

  • Parker, D., T. Legg & C. Folland, 1992. A new daily central England temperature series, 1772-1991. Int. J. Clim. 12: 317-342.

    Google Scholar 

  • Peterson, T. & R. Vose, 1997. An overview of the global historical climatology network temperature database. Bull. Am. Met. Soc. 78: 2837-2849.

    Google Scholar 

  • Peterson, T., R. Vose, R. Schmoyer & V. Razuvaev, 1998. GHCN quality control of monthly temperature data. Int. J. Clim. 18: 1169-1180.

    Google Scholar 

  • Ramsey, F. L. & D. W. Schafer, 1996. The Statistical Sleuth: A Course in Methods in Data Analysis, Duxbury Press.

  • Schindler, D. W., K. G. Beaty, E. J. Fee, D. R. Cruickshanks, E. R. Debruyn, D. L. Finlay, G. A. Linsey, J. A. Shearer, M. P. Stainton & M. A. Turner, 1990. Effects of climatic warming on lakes of the central boreal forest. Science 250: 967-970.

    Google Scholar 

  • Stone, M., 1974. Cross-validatory choice and assessment of statistical predictions. J. r. Stat. Soc. Ser. B 36: 111-147.

    Google Scholar 

  • Sommaruga-Wögrath, S., K. Koinig, R. Schmidt, R. Sommaruga, R. Tessadri & R. Psenner, 1997. Temperature effects on the acidity of remote alpine lakes. Letters to Nature 387: 64-67.

    Google Scholar 

  • Tabony, R. C., 1995. The variation of surface temperature with altitude. Met. Mag. 114: 37-48.

    Google Scholar 

  • Thompson, R., 1995. Complex demodulation and the estimation of the changing continentality of Europe's climate. Int. J. Clim. 14: 175-185.

    Google Scholar 

  • Von Storch, H. & F. W. Zwiers, 1999 Statistical Analysis in Climate Research, Cambridge University Press.

  • Weber, R., P. Talkner & G. Stefanicki, 1994. Asymmetric diurnal temperature change in the alpine region. Geophys. Res. Lett. 21: 673-676.

    Google Scholar 

  • Weber, R., P. Talkner, I. Auer, R. Böhm, M. Gajic-Capka, K. Zaninovic, R. Brádzil & P. Faško, 1997. 20th-century changes of temperature in the mountain regions of central Europe. Clim. Change 36: 327-344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agustí-Panareda, A., Thompson, R. Reconstructing air temperature at eleven remote alpine and arctic lakes in Europe from 1781 to 1997 AD. Journal of Paleolimnology 28, 7–23 (2002). https://doi.org/10.1023/A:1020363700397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020363700397

Navigation