, Volume 475, Issue 1, pp 359–369 | Cite as

Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain

  • A. Pérez-Ruzafa
  • J. Gilabert
  • J.M. Gutiérrez
  • A.I. Fernández
  • C. Marcos
  • S. Sabah


Nutrient input dynamics in the Mar Menor coastal lagoon has recently changed as a consequence of changes in agricultural practises. An interannual comparison of the environmental variables and the planktonic biomass size-spectra was performed between 1988 and 1997. While nitrate concentration was low in 1988, the values in 1997 increased considerably. Since 1995, two alloctonous jellyfish species (Rhyzostoma pulmo and Cotylorhiza tuberculata) occurred in large numbers in summer time and reached peak abundance in summer of 1997. The size-spectra analysis comparison revealed that, in spite of changes in nutrient input that stimulated the growth of larger phytoplankton cells, there were no significant differences in the spectra slope which followed a similar seasonal trend in both years. However, the plankton biovolume considered under the size range compared (between 2 and 1000 μm diameter) was, paradoxically, always lower in 1997. Given that there were higher nutrient levels in 1997, this finding suggest a strong top-down control mechanism of size structure. Gut contents of jellyfishes showed their preference for large diatoms, tintinnids, veliger larvae and copepods, corroborating that size structure in these assemblages can be subject to top-down control. The implication of these results is that the feeding activities of large gelatinous zooplankton (jellyfishes) may play an important role controlling the consequences of eutrophication within the Mar Menor coastal lagoon.

coastal lagoon eutrophication pelagic food web top-down control jellyfish size biomass-spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agawin, N. S. R., C. M. Duarte & S. Agustí, 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45: 591–600.Google Scholar
  2. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.Google Scholar
  3. Bartram, W. C., 1980. Experimental development of a model for the feeding of neritic copepods on plankton. J. Plankton Res. 3: 25–51.Google Scholar
  4. Blanco, J. M., F. Echevarría, & C. M. García, 1994. Dealing with size-spectra: Some conceptual and mathematical problems. In Rodríguez, J. & W. K. W. Li (eds), The Size Structure and Metabolism of the Pelagic Ecosystem. Sci. Mar. 58: 17–29.Google Scholar
  5. Cottingham, K. L., 1999. Nutrients and zooplankton as multiple stressors of phytoplankton communities: evidence from size structure. Limnol. Oceanogr. 44: 810–827.Google Scholar
  6. Chisholm, S.W., 1992. Phytoplankton size. In Falkowski, P. G. & A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York: 213–237.Google Scholar
  7. DeAngelis, D. L., 1992. Dynamics of Nutrient Cycling and Food Webs. Chapman & Hall, London.Google Scholar
  8. Fernández, J. A., F. X. Niell & J. Lucena, 1985. A rapid and sensitive automated determination of phosphate in natural waters. Limnol. Oceanogr. 30: 227–230.Google Scholar
  9. Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17: 805–815.Google Scholar
  10. Gaedke, U., 1992. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnol. Oceanogr. 37: 1202–1220.Google Scholar
  11. Gaedke, U., 1993. Ecosystem analysis based on biomass size distributions: a case study of a plankton community in a large lake. Limnol. Oceanogr. 38. 112–127.Google Scholar
  12. Geider, R. J., T. Platt & J. A. Raven, 1986. Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar. Ecol. Prog. Ser. 30: 93–115.Google Scholar
  13. Gilabert, J., 1992. Análisis del ecosistema planctónico del Mar Menor. Ciclo anual, distribución de tamaños y red trófica. Ph. D. University of Murcia.Google Scholar
  14. Gilabert, J., J. Rodríguez & F. Jiménez-Montes, 1990. The planktonic size-abundance spectrum in an oligotrophic hypersaline coastal lagoon, the Mar Menor, Murcia, Spain. In Barnes, M. & R. N. Gibson (eds), Trophic Relationships in the Marine Environment. Aberdeen University Press, Aberdeen: 18–27.Google Scholar
  15. Hein, M., M. F. Pedersen & K. Sand-Jensen, 1995. Size-dependent nitrogen uptake in micro-and macroalgae. Mar. Ecol. Prog. Ser. 118: 247–253.Google Scholar
  16. Heinbokel, J. F. & J. R. Beers, 1979. Studies on the functional role of tintinnids in the Southern California Bight. III. Grazing impact of natural assemblages. Mar. Biol. 52: 23–32.Google Scholar
  17. Kerfoot C. & A. Sih (eds), 1987. Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover. 386 pp.Google Scholar
  18. Lehman, J. T., 1991. Interacting growth and loss rates: the balance of top-down and bottom-up controls in plankton communities. Limnol. Oceanogr. 36: 1546–1554.Google Scholar
  19. Lillo, M., 1978. Geomorfología litoral del Mar Menor. Papeles del Departamento de Geografía (Universidad de Murcia) 8: 9–49.Google Scholar
  20. Malone, T. C., 1980. Algal size. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. Studies in Ecology, 7. Univ. California Press. Blackwell: 433–463.Google Scholar
  21. Newell, R. C., 1982. The energetics of detritus utilisation in coastal lagoons and nearshore waters. In Laserre, P. & H. Postma (eds), Coastal Lagoons. Oceanol. Acta. Proceeedings International Symposium on Coastal Lagoons. Special publication: 347–355.Google Scholar
  22. Newell, R. C., 1984. The biological role of detritus in the marine environment. In Fasham, M. R. J. (ed.), Flows of Energy and Materials in Marine Ecosystems. Plenum Press, New York: 317–344.Google Scholar
  23. Niehnius, P. H., 1992. Ecology of coastal lagoons in The Netehrlands (Veerse Meer and Grevelingen). Vie Milieu 42: 59–72.Google Scholar
  24. Nixon, S. W., J. R. Kelly, B. N. Furnas, C. A. Oviatt & S. S. Hale, 1980. Phosphorous regeneration and the metabolism of coastal marine bottom communities. In Tenore, K.R. & B.C. Coull (eds), Marine Benthic Dynamics. Univ. of South Carolina Press, Columbia (S.C.): 219–242.Google Scholar
  25. Parsons, T. R., L. Maita & C.M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York.Google Scholar
  26. Pérez-Ruzafa, A., 1989. Estudio ecológico y bionómico de los poblamientos bentónicos del Mar Menor (Murcia, SE de España). Ph. D. University of Murcia.Google Scholar
  27. Pérez-Ruzafa, I. M., 1989. Fitobentos de una laguna costera. El Mar Menor. Ph. D. University of Murcia.Google Scholar
  28. Peters, F., 1994. Prediction of planktonic protistan grazing rates. Limnol. Oceanogr. 39: 195–206.Google Scholar
  29. Platt, T.& K. Denman, 1977. Organization in the pelagic ecosystem. Helgol. wiss. Meeresunters 30: 575–581.Google Scholar
  30. Platt, T. & K. Denman, 1978. The structure of pelagic marine ecosystem. Rapp. P.-v. Reun. Cons. int. Explor. Mer. 173: 60–65.Google Scholar
  31. Raymont, J. E. G., 1963. Plankton and Productivity in the Oceans. Vol. I. Pergamon Press, Oxford: 489 pp.Google Scholar
  32. Rodríguez, J. & M. M. Mullin, 1986. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol. Oceanogr. 31: 361–370.Google Scholar
  33. Rodríguez, J., F. Jiménez, B. Bautista & V. Rodríguez, 1987. Planktonic biomass spectra dynamics during a winter production pulse in Mediterranean coastal waters. J. Plankton Res. 9: 1183–1194.Google Scholar
  34. Ros, M. & M. R. Miracle, 1984a. Distribución temporal de las dinoflageladas del Mar Menor. Anales de Biología 2: 169–180.Google Scholar
  35. Ros, M. & M. R. Miracle, 1984b. Variación estacional del fitoplancton del Mar Menor y sus relaciones con la de un punto próximoen el Mediterráneo. Limnetica 1: 32–42.Google Scholar
  36. Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London: 357 pp.Google Scholar
  37. Silvert, W. & T. Platt, 1980. Dynamic energy-flow model of the particle size distribution in pelagic ecosystems. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover (N.H.): 754–763.Google Scholar
  38. Sprules, W. G. & R. Knoechel, 1984. Lake ecosystem dynamics based on functional representation of trophic components. In Meyers, D. G. & J. R. Strickler (eds), Trophic Interactions within Aquatic Ecosystems. Westview Press, Boulder (CO): 383–403.Google Scholar
  39. Sprules, W. G. & M. Munawar, 1986. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. aquat. Sci. 43: 1789–1794.Google Scholar
  40. Terrados, J & J. D. Ros, 1991. Production dynamics in a macrophyte-dominated ecosystem: the Mar Menor coastal lagoon (SE Spain). In Ros, J. D. & N. Prat (eds), Homage to Ramon Margalef; or, Why there is such Pleasure in Studying Nature? Oecol. Aqua 10: 255–270.Google Scholar
  41. Thingstad, T. F. & F. Rassoulzadegan, 1999. Conceptual models for the biogeochemical role of the photic zone microbial food web, with particular reference to the Mediterranean Sea. Prog. Oceanogr. 44: 271–286.Google Scholar
  42. Vaulot, D. & G. F. Frisoni, 1986. Phytoplanktonic productivity and nutrients in five Mediterranean lagoons. Oceanol. Acta 9: 57–63.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • A. Pérez-Ruzafa
    • 1
  • J. Gilabert
    • 2
  • J.M. Gutiérrez
    • 1
  • A.I. Fernández
    • 1
  • C. Marcos
    • 1
  • S. Sabah
    • 1
  1. 1.Department of Ecology and HydrologyUniversity of MurciaMurciaSpain
  2. 2.Department of Chemical and Environmental EngineeringPolytechnic University of CartagenaCartagenaSpain

Personalised recommendations