Skip to main content
Log in

An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, Otago, South Island, New Zealand II. Paleoenvironmental reconstruction

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Fossil phytolith assemblages from a 154.5 m longdrill core from the Lower Taieri Plain, Otago, New Zealand are presented. Transfer functions, based on modern phytolith assemblages from sites within the same region, were applied to the fossil phytolith data set, and validated using Modern Analogue Technique (MAT) assemblage matching. Analogues for much of the Holocene and some of the Last Interglacial (provisionally Oxygen Isotope Stage 5c) were obtained. Late Glacial/Holocene precipitation and pH estimates are consistent with other paleoclimate records from the Otago region. The phytolith-based precipitation and pH estimates may act as a combined proxy forsoil weathering. The precipitation estimates may also act as a useful index of Effective Precipitation (EP). Temperature estimates derived have limited use for paleoclimate interpretation. Estimates produced for the mid-Holocene indicate a wetter environment than the present (50–100 mm greater EP) with increased soil weathering (high precipitation/low pH). Soil conductivity estimates were below estuarine levels during a diatom inferred marine transgression. This lack of phytolith response to conductivity changes is put down to a probable delayed development of suitable habitats for salt marsh plant species during the rapid transgression. The Last Interglacial estimates indicate conditions somewhat drier (200 mm less EP) than the Holocene. Consistently low log conductivity (below 0.7 µScm) estimates from the Last Interglacial contrast with the estuarine environments of the Holocene, indicating freshwater conditions in the Plain during at least part of the Last Interglaciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandre A., Lezine A.M., Vincens A. and Schwartz D. 1997. Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeogr. Palaeoclim. Palaeoecol. 136: 213-229.

    Article  Google Scholar 

  • Anderson A.J. 1991. The chronology of the settlement of New Zealand. Antiquity 65: 767-795.

    Article  Google Scholar 

  • Bartlein P.J., Prentice I.C. and Webb T. III 1986. Climate response surfaces from pollen data for some eastern North American taxa. J. Biogeogr. 13: 35-57.

    Article  Google Scholar 

  • Barrell D.J.A., Forsyth P.J., Litchfield N.J. and Brown L.J. 1999. Quaternary stratigraphy of the Lower Taieri Plain, Otago, New Zealand. Institute of Geological and Nuclear Sciences report 99/15. Institute of Geological and Nuclear Sciences Limited, Lower Hutt, New Zealand, 23 pp.

    Google Scholar 

  • Beecroft F.G., Hewitt A.E. and Smith S.M. 2000. Soils of the Taieri Plain, north-east of the Taieri River, Otago, New Zealand. DSIR Land Resources, Dunedin, New Zealand, 65 pp.

    Google Scholar 

  • Birks H.J.B., Line J.M., Juggins S., Stevenson A.C. and ter Braak C.J.F. 1990. Diatoms and pH reconstruction. Phil. Trans. R. Soc. London B 327: 263-278.

    Article  Google Scholar 

  • Birks H.J.B. 1995. Quantitative palaeoenvironmental reconstructions. In: Maddy D. and Brew J.S. (eds), Statistical Modelling of Quaternary Science Data. Quaternary Research Association, Cambridge, UK, pp. 161-254.

    Google Scholar 

  • Birks H.J.B. 1998. Numerical tools in palaeolimnology-Progress, potentialities, and problems. J. Paleolim. 20: 307-332.

    Article  Google Scholar 

  • Bishop D.G. and Turnbull I.M. 1996. Geology of the Dunedin area. Institute of Geological and Nuclear Sciences 1:250 000 geological map 21. Institute of Geological and Nuclear Sciences Limited, Lower Hutt, New Zealand.

    Google Scholar 

  • Carbone V.A. 1977. Phytoliths as paleoecological indicators. Ann. NY Acad. Sci. 288: 194-205.

    Article  Google Scholar 

  • Carter J.A. 2000a. Phytoliths from loess in Southland, New Zealand. NZ J. Bot. 38: 325-332.

    Article  Google Scholar 

  • Carter J.A. 2000b. Paleoenvironmental reconstruction from the last interglacial using phytolith analysis, southeastern North Island, New Zealand. J. Quat. Res. 15: 733-743.

    Article  Google Scholar 

  • Dickinson W., Shulmeister J., Holme P., Carter J.A., Prebble M.J. and Augustinus P. 2000. Graphical logs, radiometric dates, photographs, and background information for Lake Waipori core 99-1, Taieri Plain, New Zealand. School of Earth Sciences Research Report No. 5. Victoria University of Wellington, Wellington, New Zealand, 98 pp.

    Google Scholar 

  • Farrent E.D. and Shaw M.S. 1977. The Taieri Plains: Tales of years that are gone. Otago Centennial Historical Publications. Whitcombe & Tombs Limited, Dunedin, New Zealand, 238 pp.

    Google Scholar 

  • Fredlund G.G. and Tieszen L.L. 1994. Modern phytolith assemblages from the North American Great Plains. J. Biogeogr. 21: 321-335.

    Article  Google Scholar 

  • Fredlund G.G. and Tieszen L.L. 1997. Calibrating grass phytolith assemblages in climatic terms: application to late Pleistocene assemblages from Kansas and Nebraska. Palaeogeogr. Palaeoclim. Palaeoecol. 136: 199-211.

    Article  Google Scholar 

  • Gibb J.G. 1986. A New Zealand regional Holocene eustatic sea level curve and its application to determination of vertical tectonic movements. A contribution to IGCP-Project 200. Roy. Soc. NZ Bull. 24: 377-396.

    Google Scholar 

  • Hughes J. 1999. A diatom based paleoenvironmental history of the Taieri basin, Otago, New Zealand, B.Sc. Thesis (Hons), Victoria University of Wellington 58 pp.

  • Juggins S. and ter Braak C.J.F. 1992. CALIBRATE-a program for species calibration by (weighted-averaging) partial least squares regression. Environmental Change Research Centre, University College, London, UK.

    Google Scholar 

  • Kondo R., Childs C.W. and Atkinson I.A.E. 1994. Opal phytoliths of New Zealand. Manaaki Whenua Press, Lincoln, New Zealand, 85 pp.

    Google Scholar 

  • Kurmann M.H. 1985. An opal phytolith and palynomorph study of extant and fossil soils in Kansas (U.S.A.). Palaeogeogr. Palaeoclim. Palaeoecol. 49: 217-235.

    Article  Google Scholar 

  • Laird K.R., Fritz S.C., Cumming B.F. and Grimm E.C. 1998. Early-Holocene limnological and climatic variability in the Northern Great Plains. The Holocene 8: 275-285.

    Article  Google Scholar 

  • Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A. 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps, I. Climate. J. Paleolim. 18: 395-420.

    Article  Google Scholar 

  • Markgraf V., Dodson J.R., Kershaw A.P., McGlone M.S. and Nicholls N. 1992. Evolution of late Pleistocene and Holocene climates in the circum-South Pacific land areas. Clim. Dyn. 6: 193-211.

    Article  Google Scholar 

  • McGlone M.S. 1988. History of the New Zealand vegetation. In: Huntley B. and Webb T. III (eds), Vegetation History. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 557-599.

    Chapter  Google Scholar 

  • McGlone M.S. 1995. Late Glacial landscape and vegetation change and the Younger Dryas climatic oscillation in New Zealand. Quat. Sci. Rev. 14: 867-881.

    Article  Google Scholar 

  • McGlone M.S. and Bathgate J.L. 1983. Vegetation and climate history of the Longwood Range, South Island, New Zealand, 12 000 BP to the present. NZ J. Bot. 21: 292-315.

    Article  Google Scholar 

  • McGlone M.S. and Moar N.T. 1998. Dryland Holocene vegetation history, Central Otago and the Mackenzie Basin, South Island, New Zealand. NZ J. Bot. 36: 91-111.

    Article  Google Scholar 

  • McGlone M.S. and Wilmhurst J.M. 1999a. A Holocene record of climate, vegetation change and peat bog development, east Otago, South Island, New Zealand. J. Quat. Sci. 14: 239-254.

    Article  Google Scholar 

  • McGlone M.S. and Wilmhurst J.M. 1999b. Dating initial Maori environmental impact in New Zealand. Quat. Int. 59: 5-16.

    Article  Google Scholar 

  • McGlone M.S., Kershaw A.P. and Markgraf V. 1992. El Niño/Southern Oscillation and climatic variability in Australasian and South American palaeoenvironmental records. In: Markgraf V. and Diaz H. (eds), El Niño: historical and paleoclimatic aspects of the Southern Oscillation. Cambridge University Press, Cambridge, UK, pp. 435-462.

    Google Scholar 

  • McGlone M.S., Salinger M.J. and Moar N.T. 1993. Paleovegetation studies of New Zealand's climate since the Last Glacial Maximum. In: Wright H.E., Kutzbach J.E., Webb T. III, Ruddiman W.F., Street-Perrot F.A. and Bartlein P.J. (eds), Global climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, Minnesota, pp. 294-317.

    Google Scholar 

  • McGlone M.S., Mark A.F. and Bell D. 1995. Late Pleistocene and Holocene vegetation history, Central Otago, South Island, New Zealand. J. R. Soc. NZ 25: 1-22.

    Article  Google Scholar 

  • McGlone M.S., Moar N.T. and Meurk C.D. 1997. Growth and vegetation history of alpine mires on the Old Man Range, Central Otago, New Zealand. Arc. Alp. Res. 29: 32-44.

    Article  Google Scholar 

  • McIntyre D.J. and McKellar I.C. 1970. A radiocarbon dated post glacial pollen profile from Swampy Hill, Dunedin, New Zealand. NZ J. Geol. Geophys. 13: 346-349.

    Article  Google Scholar 

  • Molloy L.F. and Blakemore L.C. 1974. Studies on a climosequence of soils in tussock grasslands. NZ J. Sci. 17: 233-255.

    Google Scholar 

  • New Zealand Meteorological Service 1980. Summaries of climatological observations to 1980. Miscellaneous Publication 177: 1-172.

    Google Scholar 

  • Norton D.A., McGlone M.S. and Wigley T.M.L. 1986. Quantitative analyses of modern pollen-climate relationships in New Zealand indigenous forest. NZ J. Bot. 24: 331-342.

    Article  Google Scholar 

  • O'Brien R.W. 2000. Quaternary vegetational, environmental and climatic history of the Lower Taieri Plain, east Otago, New Zealand, M.Sc. Thesis, Massey University, Palmerston North, New Zealand 172 pp.

    Google Scholar 

  • Olander H., Birks H.J.B., Korhola A. and Blom T. 1999. An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. The Holocene 9: 279-294.

    Article  Google Scholar 

  • Overpeck J.T., Webb T. III and Prentice I.C. 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analog. Quat. Res. 23: 87-108.

    Article  Google Scholar 

  • Overpeck J.T., Webb R.S. and Webb T. III 1992. Mapping eastern North American vegetation change of the past 18 ka: No-analogs and the future. Geology 20: 1071-1074.

    Article  Google Scholar 

  • Pickrill R.A., Fenner J.M. and McGlone M.S. 1992. Late Quaternary evolution of a fjord environment, Preservation Inlet, New Zealand. Quat. Res. 38: 331-346.

    Article  Google Scholar 

  • Piperno D.R. 1988. Phytolith Analysis, an Archaeological and Geological Perspective. Academic Press, San Diego, California, 280 pp.

    Google Scholar 

  • Powers-Jones A.H. and Padmore J. 1992. The use of quantitative methods and statistical analyses in the study of opal phytoliths. In: Rapp, Jr. G. and Mulholland S.C. (eds), Phytolith Systematics: Emerging Issues. Plenum Press, New York, pp. 47-56.

    Google Scholar 

  • Prebble M.J. 2001. A phytolith analysis-based paleoenvironmental interpretation of the Lower Taieri Plain, Otago, New Zealand, M.Sc. Thesis, Victoria University of Wellington 128 pp.

  • Prebble M.J., Schallenberg M., Carter J.A. and Shulmeister J. 2002. An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, Otago, South Island, New Zealand I. Modern assemblages and transfer functions. J. Paleolim. 27 (this issue): 393-413.

    Article  Google Scholar 

  • Prentice I.C. 1980. Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev. Palaeobot. Palynol. 31: 71-104.

    Article  Google Scholar 

  • Shulmeister J. 1999. Australasian evidence for mid-holocene climate change implies precessional control of Walker Circulation in the Pacific. Quat. Int. 57/58: 81-91.

    Article  Google Scholar 

  • Shulmeister J., Soons J.M., Berger G.W., Harper M., Holt S., Moar N. and Carter J.A. 1999. Environmental and sea-level changes on Banks Peninsula (Canterbury, New Zealand) through three glaciation-interglaciation cycles. Palaeogeogr. Palaeoclim. Palaeoecol. 152: 101-127.

    Article  Google Scholar 

  • ter Braak C.J.F. 1995. Non-linear methods for multivariate statistical calibration and their use in paleoecology: a comparison of inverse (k-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches. Chemometr. Intell. Lab. Systems 28: 165-180.

    Article  Google Scholar 

  • ter Braak C.J.F. and Juggins S. 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 270: 485-502.

    Article  Google Scholar 

  • Vandergoes M.J., Fitzsimons S.J. and Newham R.M. 1997. Late Glacial to Holocene vegetation and climate change in the eastern Takitimu Mountains, western Southland, New Zealand. J. Roy. Soc. NZ 27: 53-66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Shulmeister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prebble, M., Shulmeister, J. An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, Otago, South Island, New Zealand II. Paleoenvironmental reconstruction. Journal of Paleolimnology 27, 415–427 (2002). https://doi.org/10.1023/A:1020314719427

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020314719427

Navigation