Abstract
The complex permittivity for chlorobenzene–alcohol binary mixtures have been determined over the frequency range of 10 MHz to 20 GHz, at 15, 25, 35, and 45°C, using the time-domain reflectometry (TDR) method for 11 concentrations of each chlorobenzene–alcohol system. The alcohols used were methanol, ethanol, and 1-propanol. The values of static dielectric constant, relaxation time, the corresponding excess properties, the Redlich–Kister coefficients up to the third order, the Kirkwood correlation factor, and thermodynamic parameters of the mixtures have been determined. The excess permittivity is found to be negative for chlorobenzene–methanol and chlorobenzene–ethanol, whereas it is positive in the 1-propanol rich region. The excess inverse relaxation time is negative for all the systems studied here. The Kirkwood effective correlation factor increases with an increasing in the molecular size of the alcohol, but decreases with increasing temperature.
Similar content being viewed by others
References
A. S. Chaudhari, P. W. Khirade, R. Singh, S. N. Helambe, N. K. Narin, and S. C. Mehrotra, J. Mol. Liquids, p. 245(1999).
M. T. Hosanna, R. H. Fattepur, D. K. Deshpande, and S. C. Mehrotra, J. Chem. Soc. Faraday Trans. 91, 623(1995).
A. C. Kumbharkhane, S. M. Puranik, and S. C. Mehrotra, J. Solution Chem. 21, 201(1992).
S. P. Patil, A. S. Chaudhary, M. P. Lokhande, A. G. Shankarwar, S. N. Helambe, B. R. Arbad, and S. C. Mehrotra, J. Chem. Eng. Data 44, 875(1999).
S. M. Puranik, A. C. Kumbharkhane, and S. C. Mehrotra, Indian J. Phys. 67(B), 9(1993).
S. N. Ahire, A. S. Chaudhary, M. P. Lokhande, and S. C. Mehrotra, J. Solution Chem. 27, 993(1998).
P. W. Khirade, A. S. Chaudhary, J. B. Shinde, S. N. Helambe, and S. C. Mehrotra, J. Solution Chem. 28, 1031(1999).
S. N. Helambe, M. P. Lokhande, A. C. Kumbharkhane, and S. C. Mehrotra, Pramana-J. Phy. 45(1), 19(1995).
S. N. Helambe, A. S. Chaudhary, and S. C. Mehrotra, J. Mol. Liquids, p. 235(2000).
R. H. Cole, J. G. Berbarian, S. Mashimo, G. Chryssikos, A. Burns, and E. Tombari, J. Appl. Phys. 66, 793(1989).
S. M. Puranik, A. C. Kumbharkhane, and S. C. Mehrotra, J. Chem. Soc. Faraday Trans. 87, 1569(1991).
S. M. Puranik, A. C. Kumbharkhane, and S. C. Mehrotra, J. Microwave Power EM Energy 26, 196(1991).
C. E. Shannon, Proc. IRE. 37, 10(1949).
H. A. Samulan, Proc. IRE. 39, 175(1951).
P. Debye, Polar Molecules, (Chemical Catalog: New York, 1929).
P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, (McGraw Hill, New York, 1969), p. 104.
M. Tabellout, P. Lanceleur, J. R. Emery, D. Hayward, and R. A. Pethrick, J. Chem. Soc. Faraday Trans. 86, 1453(1990).
S. C. Mehrotra and J. E. Boggs, J. Chem. Phys. 66, 5306(1977).
M. I. Aralaguppi, T. M. Aminabhavi, R. H. Balundgi, and S. S. Joshi, J. Phy. Chem. 95, 5299(1991).
S. F. Al-Azzawl, A. M. Awwad, A. M. Al-Dujaili, and M. K. Al-Noori, J. Chem. Eng. Data 35, 463(1990).
H. Frolhich, Theory of Dielectrics, (Oxford University Press, London, 1949).
A. C. Kumbharkhane, S. M. Puranik, and S. C. Mehrotra, J. Chem. Phys. 21, 201(1993).
D. A. G. Bruggeman, Ann. Phys. 5, 636(1935).
S. M. Puranik, A. C. Kumbharkhane, and S. C. Mehrotra, J. Mol. Liquids 59, 173(1994).
J. B. Hasted, Aqueous Dielectrics (Chapman and Hall, London, 1973).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Pawar, V.P., Mehrotra, S.C. Dielectric Relaxation Study of Liquids Having Chloro Group with Associated Liquids. I. Chlorobenzene with Methanol, Ethanol, and 1-Propanol. Journal of Solution Chemistry 31, 559–576 (2002). https://doi.org/10.1023/A:1020293629513
Issue Date:
DOI: https://doi.org/10.1023/A:1020293629513