Advertisement

Russian Journal of Plant Physiology

, Volume 49, Issue 5, pp 650–656 | Cite as

The Effect of Various Stresses on the Expression of Genes Encoding the Secreted Proteins of the Cyanobacterium Synechocystis sp. PCC 6803

  • T. V. Sergeyenko
  • D. A. Los
Article

Abstract

The effects of various stresses (osmotic, salt, low-temperature, high-temperature, and high-light stress) on the amount of mRNA of eight genes encoding the secreted proteins of Synechocystis sp. PCC 6803 were studied. Osmotic stress (0.5 M sorbitol) reduced the amount of all mRNAs, with the exception of slr0924. Supposedly, this gene encodes Tic22, a polypeptide involved in the formation of the transport system for proteins crossing the internal thylakoid membrane on the way to the lumen. Salt stress (0.5 M NaCl) inhibited the expression of all genes for secreted proteins almost completely. Low temperature (20°C) did not affect the expression of the sll1891 gene of an unknown function and the slr0924 gene. The high temperature (44°C) suppressed the expression of all genes tested. A detailed study of the expression of the sll1694 (pilA1) gene, which encodes the main structural protein of cyanobacterial pili, pilin PilA1, demonstrated that virtually all stresses suppressed its expression. Thus, various stresses were shown to suppress the expression of most genes encoding Synechocystis secreted proteins.

Synechocystis pilin secreted proteins gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Hill, D.R., Hladun, S.L., Scherer, S., and Potts, M., Water Stress Proteins of Nostoc commune (Cyanobacteria) Are Secreted with UV-A/B-Absorbing Pigments and Associate with 1,4-β-D-Xylanxylanohydrolase Activity, J. Biol. Chem., 1994, vol. 269, pp. 7726-7734.Google Scholar
  2. 2.
    Takahashi, I., Hayano, D., Asayama, M., Masahiro, F., Watahiki, M., and Shirai, M., Restriction Barrier Composed of an Extracellular Nuclease and Restriction Endonuclease in the Unicellular Cyanobacterium Microcystis sp., FEMS Microbiol. Lett., 1996, vol. 145, pp. 107-111.Google Scholar
  3. 3.
    Engels, A., Kahmann, U., Ruppel, H.G., and Pistorius, E.K., Isolation, Partial Characterization and Localization of a Dihydrolipoamide Dehydrogenase from the Cyanobacterium Synechocystis PCC 6803, Biochim. Biophys. Acta, 1997, vol. 1340, pp. 33-44.Google Scholar
  4. 4.
    Hoiczyk, E. and Baumeister, W., Oscillin, an Extracellular, Ca2+-Binding Glycoprotein Essential for the Gliding Motility of Cyanobacteria, Mol. Microbiol., 1997, vol. 26, pp. 699-708.Google Scholar
  5. 5.
    Muro-Pastor, A.M., Herrero, A., and Flores, E., The nuiA Gene from Anabaena sp. Encoding an Inhibitor of the NucA Sugar-Non-Specific Nuclease, J. Mol. Biol., 1997, vol. 268, pp. 589-598.Google Scholar
  6. 6.
    Sergeyenko, T.V. and Los, D.A., Identification of Secreted Proteins of the Cyanobacterium Synechocystis sp. Strain PCC 6803, FEMS Microbiol. Lett., 2000, vol. 193, pp. 213-216.Google Scholar
  7. 7.
    Bhaya, D., Watanabe, N., Ogawa, T., and Grossman, A.R., The Role of an Alternative Sigma Factor in Motility and Pilus Formation in the Cyanobacterium Synechocystis sp. PCC 6803, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 3188-3193.Google Scholar
  8. 8.
    Bhaya, D., Bianko, N.R., Bryant, D., and Grossman, A., Type IV Pilus Biogenesis and Motility in the Cyanobacterium Synechocystis sp. PCC 6803, Mol. Microbiol., 2000, vol. 37, pp. 941-951.Google Scholar
  9. 9.
    Yoshihara, S., Geng, X.X., Okamoto, S., Yura, K., Murata, T., Go, M., Ohmori, M., and Ikeuchi, M., Mutational Analysis of Genes Involved in Pilus Structure, Motility and Transformation Competency in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol., 2001, vol. 42, pp. 63-73.Google Scholar
  10. 10.
    Stanier, R.Y., Kunisawa, R., Mandel, M., and Cohen-Bazire, G., Purification and Properties of Unicellular Blue-Green Algae (Order Chroococcales), Bacteriol. Rev., 1971, vol. 35, pp. 171-205.Google Scholar
  11. 11.
    Los, D.A., Horvath, I., Vigh, L., and Murata, N., The Temperature-Dependent Expression of the Desaturase Gene desA in Synechocystis PCC 6803, FEBS Lett., 1993, vol. 378, pp. 57-60.Google Scholar
  12. 12.
    Kiseleva, L.L., Serebriiskaya, T.S., Horvath, I., Vigh, L., Lyukevich, A.A., and Los, D.A., Expression of the Gene for the Δ9 Acyl-Lipid Desaturase in the Thermophilic Cyanobacterium, J. Mol. Microbiol. Biotechnol., 2000, vol. 2, pp. 331-338.Google Scholar
  13. 13.
    Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., Kimura, T., Hosouchi, T., Matsuno, A., Muraki, A., Nakazaki, N., Naruo, K., Okumura, S., Shimpo, S., Takeuchi, C., Wada, T., Watanabe, A., Yamada, M., Yasuda, M., and Tabata, S., Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6803: 2. Sequence Determination of the Entire Genome and Assignment of Potential Protein-Coding Regions, DNA Res., 1996, vol. 3, pp. 109-136.Google Scholar
  14. 14.
    Yoshihara, S., Suzuki, F., Fujita, H., Geng, X.X., and Ikeuchi, M., Novel Putative Photoreceptor and Regulatory Genes Required for the Positive Phototactic Movement of the Unicellular Cyanobacterium Synechocystis.sp. PCC 6803, Plant Cell Physiol., 2000, vol. 41, pp. 1299-1304.Google Scholar
  15. 15.
    Suzuki, I., Los, D.A., Kanesaki, Y., Mikami, K., and Murata, N., The Pathway for Perception and Transduction of Low-Temperature Signals in Synechocystis, EMBO J., 2000, vol. 19, pp. 1327-1334.Google Scholar
  16. 16.
    Strom, M.S. and Lory, S., Structure—Function and Biogenesis of the Type IV Pili, Annu. Rev. Microbiol., 1993, vol. 47, pp. 565-596.Google Scholar
  17. 17.
    Los, D.A., Ray, M.K., and Murata, N., Differences in the Control of the Temperature-Dependent Expression of Four Genes for Desaturases in Synechocystis sp. PCC 6803, Mol. Microbiol., 1997, vol. 25, pp. 1167-1176.Google Scholar
  18. 18.
    Lehel, C., Los, D.A., Wada, H., Gyorgyey, A., Horvath, I., Kovacs, E., Murata, N., and Vigh, L., A Second groEL-Like Gene Organized in a groESL Operon Is Present in the Genome of Synechocystis sp. PCC 6803, J. Biol. Chem., 1993, vol. 268, pp. 1799-1804.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • T. V. Sergeyenko
    • 1
  • D. A. Los
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations