Skip to main content
Log in

CrmA Protects Against Apoptosis and Ceramide Formation in PC12 Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

TNF-α activated caspase 8 and caspase 3 in PC12 cells, leading to cell death by apoptosis (DNA fragmentation). TNF-α caspase activation and cell killing were blocked by transfection and overexpression of the viral protein CrmA, which specifically inhibits caspase 8. CrmA was also able to block the TNF-α-induced increase in ceramide formation in PC12 cells. Conversely, if caspase 8 was activated by light-activated Rose Bengal, there was an increase in both ceramide and caspase 3–mediated apoptosis, which was blocked by CrmA overexpression. This suggested that caspase 8 increases ceramide either by increasing its synthesis or by activating sphingomyelinase. Since fumonisin B1 did not block and sphingomyelin decreased when ceramide increased, we concluded that activation of sphingomyelinase is the most likely mechanism. The Rose Bengal activation of caspase 8 and increased ceramide formation was blocked with IETD-CHO, to show that reactive oxygen species (also generated by Rose Bengal) were not responsible for the observed increase in ceramide. Thus in PC12 pheochromocytoma cells, ceramide appears to amplify the death signal and there appears to be a sequence of events: TNF; TRADD, pro-caspase 8, caspase 8, sphingomyelinase, ceramide, caspase 3, apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Allan, S. M. and Rothwell, N. J. 2001. Cytokines and acute neurodegeneration. Nat. Rev. Neurosci. 10:734-744.

    Google Scholar 

  2. Barker, V., Middleton, G., Davey, F., and Davies, A. M. 2001. TNFα contributes to the death of NGF-dependent neurons during development. Nat. Neurosci. 4:1194-1198.

    Google Scholar 

  3. Boone, E., Vanden Berghe, T., Van Loo, G., DeWilde, G., DeWael, N., Veraammen, D., Fiers, W., Haegeman, G., and Vandenabeele, P. 2000. Structure/function analysis of p55 tumor necrosis factor receptor and fas-associated death domain: Effect on necrosis in L929sA cells. J. Biol. Chem. 275:37596-37603.

    Google Scholar 

  4. Chao, C. C., Hu, S., Ehrich, L., and Peterson, P. K. 1995. Interleukin-1 and tumor necrosis factor-α synergistically mediate neurotoxocity: Involvement of nitric oxide and of N-methylaspartate receptors. Brain, Behav. Immunol. 9:355-365.

    Google Scholar 

  5. Reimann-Philipp, U., Ovase, R., Wiegei, P. H., and Grammas, P. 1995. Mechanisms of cell death in primary cortical neurons and PC12 cells. J. Neurosci. Res. 64:654-660.

    Google Scholar 

  6. Yang, Z., Costanzo, M., Golde, D. W., and Kolesnick, R. N. 1993. Tumor necrosis factor activation of the sphingomyelin pathway signals nuclear factor kB translocation in intact HL-60 cells. J. Biol. Chem. 268:20520-20523.

    Google Scholar 

  7. Wiesner, D. A. and Dawson, G. 1996. Staurosporine induces programmed cell death in embryonic neurons and activation of the ceramide pathway. J. Neurochem. 66:1418-1425.

    Google Scholar 

  8. Brugg, B., Michel, P., Agid, Y., and Ruberg, M. 1996. Ceramide induces apoptosis in cultured mesencephalic neurons. J. Neurochem. 66:733-739.

    Google Scholar 

  9. Edsall, L. C., Cuvillier, O., Twitty, S., Spiegel, S., and Milstein, S. 2001. Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells. J. Neurochem. 76:1573-1584.

    Google Scholar 

  10. Furuya, S., Mitoma, J., Makino, A., and Hirabayashi, Y. 1998. Ceramide and its interconvertible metabolite sphingosine function as indispensible lipid factors involved in survival and dendritic differentiation of cerebellar Purkinje cells. J. Neurochem. 71:366-376.

    Google Scholar 

  11. Riboni, L., Viani, P., Bassi, R., Prinetti, A., and Tettamanti, G. 1997. The role of sphingolipids in the process of signal transduction. Prog. Lipid Res. 36:153-195.

    Google Scholar 

  12. Hoffman, K. and Dixit, V. M. 1998. Ceramide in apoptosis-does it really matter? Trends Biochem. Sci. 23:374-377.

    Google Scholar 

  13. Kolesnick, R. and Hannun, Y. A. Ceramide and apoptosis. Trends Biochem. Sci. 24:224-225.

  14. Goswami, R. and Dawson, G. 2000. Does ceramide play a role in neural cell apoptosis? J. Neurosci. Res. 60:141-149.

    Google Scholar 

  15. Dbaibo, G. S., El-Assaad, W., Kricorian, A., Liu, B., Diab, K., Idriss, N. Z., El-Sabban, M., Driscoll, T. A., Perry, D. K., and Hannun, Y. A. 2001. Ceramide generation by two distinct pathways in tumor necrosis factor α-induced cell death. FEBS Lett. 503:7-12.

    Google Scholar 

  16. Ferri, K. F. and Kroemer, G. 2001. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3:255-263.

    Google Scholar 

  17. Kirschnek, S., Paris, F., Weller, M., Grassme, H., Ferlinz, K., Riehle, A., Fuks, Z., Kolesnick, R., and Gulbins, E. 2000. CD95-mediated apoptosis in vivo involves acid sphingomyelinase. J. Biol. Chem. 275:27316-27323.

    Google Scholar 

  18. Xu, J., Chen-Hsiung, Y., and Hsu, C. Y. 1998. Involvement of de novo ceramide biosynthesis in tumor necrosis factor-α/cycloheximide-induced cerebral endothelial cell death. J. Biol. Chem. 273:16521-16526.

    Google Scholar 

  19. Zhuang, S., Lynch, M., and Kochevar, I. 1999. Caspase-8 mediates caspase-3 activation and cytochrome c release during singlet oxygen-induced apoptosis of HL-60 cells. Exp. Cell Res. 250:203-212.

    Google Scholar 

  20. Ray, C. and Pickup, D. 1996. The mode of death of pig kidney cells infected with cowpox virus is governed by the expression of the CrmA gene. Virology 217:384-391.

    Google Scholar 

  21. Li, X. K., Fujino, M., and Suzuki, S. 2000. Inhibition of Fas-mediated fulminant hepatitis in CrmA gene-transfected mice. Biochem. Biophys. Res. Commun. 273:101-109.

    Google Scholar 

  22. Stephanis, L., Park, D. S., and Greene, L. A. 1996. Induction of CPP32-like activity in PC12 cells by withdrawal of trophic support. J. Biol. Chem. 48:30663-30671.

    Google Scholar 

  23. Cho, S. and Dawson, G. 1999. Palmitoyl protein thioesterase 1 protects against apoptosis mediated by Ras-Akt-caspase pathway in neuroblastoma cells. J. Neurochem. 74:1478-1488.

    Google Scholar 

  24. Scurlock, B. K. and Dawson, G. 1999. Differential responses of oligodendrocytes to tumor necrosis factor and other proapoptotic agents: Role of ceramide in apoptosis. J. Neurosci. Res. 55:514-522

    Google Scholar 

  25. Goswami, R., Dawson, S. A., and Dawson, G. 2000. Multiple polyphosphoinositide pathways regulate apoptotic signalling in a dorsal root ganglion derived cell line. J. Neurosci. Res. 59:136-144.

    Google Scholar 

  26. Wiesner, D. A., Kilkus, J. P., Gottschalk, A. R., Quintans, J., and Dawson, G. 1997. Anti-immunoglobulin-induced apoptosis in WEHI-231 cells involves the slow formation of ceramide from sphingomyelin and is blocked by bcl-xL. J. Biol. Chem. 272:9868-9876.

    Google Scholar 

  27. Liu, Z., Hsu, H., Geoddel, D. V., and Karin, M. 1996. Dissection of TNF receptor functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87:565-576.

    Google Scholar 

  28. Gu, C., Casaccua-Bonnefil, P., Srinivasan, A., and Chao, M. V. 1999. Oligodendrocyte apoptosis mediated by caspase activation. J. Neurosci. 10:3043-3049.

    Google Scholar 

  29. Grassme, H., Jekle, A., Kolesnick, R., and Gulbins, E. 2001. CD95 signaling via ceramide-rich membrane rafts. J. Biol. Chem. 276:23954-23961.

    Google Scholar 

  30. Prinetti, A., Chigorno, V., Prioni, S., Loberto, N., Tettamanti, G., and Sonnino, S. 2001. Changes in the lipid turnover, composition, and organization as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J. Biol. Chem. 276:21136-21145.

    Google Scholar 

  31. Segui, B., Cuvillier, O., Adam-Klages, S., Garcia, V., Malagarie-Cazenave, S., Leveque, S., Caspar-Bauguil, S., Coudert, J., Salvayre, R., Kronke, M., and Levade, T. 2001. Involvement of FAN in TNF-induced apoptosis. J. Clin. Invest. 108:143-151.

    Google Scholar 

  32. JDe Nadai, C., Sestili, P., Cantoni, O., Lievremont, J. P., Sciorati, C., Barsacchi, R., Moncada, S., Meldolesi, J., and Clementi, E. 2000. Nitric oxide inhibits tumor necrosis factor-alpha-induced apoptosis by reducing the generation of ceramide. Proc. Natl. Acad. Sci. U.S.A. 97-5480-5485.

    Google Scholar 

  33. Guidarelli, A., Clementi, E., De Nadai, C., Bersacchi, R., and Cantoni, O. 2001. α enhances the DNA single-strand breakage induced by the short-chain lipid hydroperoxide analogue tert-butylhydroperoxide via ceramide-dependent inhibition of complex III followed by enforced superoxide and hydrogen peroxide formation. Exp. Cell Res. 270:56-65.

    Google Scholar 

  34. Bezombes, C., Segui, B., Cuvillier, O., Bruno, A. P., Uro-Coste, E., Gouaze, V., Andrieu-Abadie, N., Carpentier, S., Laurent, G., Salvare, R., Jaffrezou, J. P., and Levade, T. 2001. Lysosomal sphingomyelinase is not solicited for apoptosis ignaling. FASEB J. 15:297-299.

    Google Scholar 

  35. Chalfant, C. E., Kishikawa, K., Mumby, M. C., Kamibayashi, C., Bielawska, A., and Hannun, Y. 1999. Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. J. Biol. Chem. 274:20313-20317.

    Google Scholar 

  36. Zhou, H., Summers, S. A., Birnbaum, M. J., and Pittman, R. 1998. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J. Biol. Chem. 273:16568-16575.

    Google Scholar 

  37. Goswami, R., Kilkus, J., Dawson, S., and Dawson, G. 1999. Overexpression of Akt (protein kinase B) confers protection against apoptosis and prevent formation of ceramide in response to pro-apoptotic stimuli. J. Neurosci. Res. 57:884-893.

    Google Scholar 

  38. Salinas, M., Lopez-Valdaliso, R., Martin, D., Alvarez, A., and Cuadrado, A. 2000. Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol. Cell. Neurosci. 15:156-169.

    Google Scholar 

  39. Reed, J. C. 2000. Mechanisms of apoptosis. Am. J. Pathol. 157:1415-1430.

    Google Scholar 

  40. Tepper, A., deVries, E., Blitterswijk, W. J. V., and Borst, J. 1999. Ordering of ceramide formation caspase activation, and mitochondrial changes during CD-95 and DNA damage-induced apoptosis. J. Clin. Invest. 103:971-977.

    Google Scholar 

  41. Algeciras-Schimnich, A., Le Shen, Barnhart, B. C., Murmann, A. E., Burkhardt, J. K., and Peter, M. E. 2002. Molecular ordering of the Initial signaling events of CD95. Mol. Cell. Biol. 22:207-220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goswami, R., Kilkus, J., Scurlock, B. et al. CrmA Protects Against Apoptosis and Ceramide Formation in PC12 Cells. Neurochem Res 27, 735–741 (2002). https://doi.org/10.1023/A:1020292504535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020292504535

Navigation