Skip to main content
Log in

Glycosphingolipid Domains on Cell Plasma Membrane

  • Published:
Bioscience Reports

Abstract

In this study we analyzed by immunofluorescence, laser confocal microscopy, immunoelectron microscopy and label fracture technique the ganglioside distribution on the plasma membrane of several different cell types: human peripheral blood lymphocytes (PBL), Molt-4 lymphoid cells, and NIH 3T3 fibroblasts, which mainly express monosialoganglioside GM3, and murine NS20Y neuroblastoma cells, which have been shown to express a high amount of monosialoganglioside GM2. Our observations showed an uneven distribution of both GM3 and GM2 on the plasma membrane of all cells, confirming the existence of ganglioside-enriched microdomains on the cell surface. Interestingly, in lymphoid cells the clustered immunolabeling appeared localized over both the microvillous and the nonvillous portions of the membrane. Similarly, in cells growing in monolayer, the clusters were distributed on both central and peripheral regions of the cell surface. Therefore, glycosphingolipid clusters do not appear confined to specific areas of the plasma membrane, implying general functions of these domains, which, as structural components of a cell membrane multimolecular signaling complex, may be involved in cell activation and adhesion, signal transduction and, when associated to caveolae, in endocytosis of specific molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bremer, E. G., Schlessinger, J., and Hakomori, S. (1986) Ganglioside-mediated modulation on cell growth: specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J. Biol. Chem. 261:2434-2440.

    Google Scholar 

  • Brown, D. A. and Rose, J. K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the cell surface. Cell 68:533-544.

    Google Scholar 

  • Butor, C., Stelzer, E. H. K., Sonnenberg, A., and Davoust, J. (1991) Apical and basal Forssmann antigen in MDCK II cells: a morphological and quantitative study. Eur. J. Cell Biol. 56:269-285.

    Google Scholar 

  • Cametti, C. et al. (1992) Alteration of the passive electrical properties of lymphocyte membranes induced by GM1 and GM3 glycolipids. Biochim. Biophys. Acta 1111:197-203.

    Google Scholar 

  • Campana, W. M., Hiraiwa, M., Addison, K. C., and O'Brien, J. S. (1996) Induction of MAPK phosphorylation by prosaposin and prosaptide in PC12 cells. Biochem. Biophys. Res. Commun. 229:706-712.

    Google Scholar 

  • Fishman, P. H. (1982) Role of membrane gangliosides in the binding and action of bacterial toxins. J. Membr. Biol. 69:85-97.

    Google Scholar 

  • Garofalo, T. et al. (1998) A novel mechanism of CD4 down-modulation induced by monosialoganglioside GM3. J. Biol. Chem. 273:35153-35160.

    Google Scholar 

  • Gouy, H., Debrè, P., and Bismuth, G. (1995) Triggering of a sustained calcium response through a p56 lck-dependent pathway by exogenous ganglioside GM1 in human T lymphocytes. J. Immunol. 155:5160-5166.

    Google Scholar 

  • Hakomori, S. (1990) Bifunctional role of glycosphingolipids. J. Biol. Chem. 265:18713-18716.

    Google Scholar 

  • Hakomori, S. (1993) Structure and function of sphingoglycolipids in transmembrane signaling and cell—cell interactions. Biochem. Soc. Trans. 21:583-595.

    Google Scholar 

  • Hakomori, S., Handa, K., Iwabuchi, K., Yamamura, S., and Prinetti, A. (1998) New insights in glycosphingolipid function: “glycosignaling domain”, a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology 8:xi-xix.

    Google Scholar 

  • Kotani, M., Ozawa, H., Kawashima, I., Ando, S., and Tai, T. (1992) Generation of one set of monoclonal antibodies specific for a-pathway ganglio-series gangliosides. Biochim. Biophys. Acta 1117:97-103.

    Google Scholar 

  • Meivar-Levy, I., Sabanay, H., Bershadsky, A. D., and Futerman, A. H. (1997) The role of sphingolipids in the maintenance of fibroblast morphology. J. Biol. Chem. 272:1558-1564.

    Google Scholar 

  • Minowada, J., Ohnuma, T., and Moore, G. E. (1972) Rosette-forming human lymphoid cell lines. I: Establishment and evidence for origin of thymus-derived lymphocytes. J. Natl. Cancer Inst. 49:891-895.

    Google Scholar 

  • Misasi, R. et al. (1966) Prosaposin and prosaptide, a peptide from prosaposin, induce an increase in ganglioside content on NS20Y neuroblastoma cells. Glycoconjugate J. 13:195-202.

    Google Scholar 

  • Misasi, R. et al. (1998) Colocalization and complex formation between prosaposin and monosialoganglioside GM3 in neural cells. J. Neurochem. 71:2313-2321.

    Google Scholar 

  • Mutoh, T., Tokuda, A., Miyadai, T., Hamaguchi, M., and Fujiki, N. (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor functions. Proc. Natl. Acad. Sci. USA 92:5087-5091.

    Google Scholar 

  • Nores, G. A., Dohi, T., Taniguchi, M., and Hakomori, S. (1987) Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor-associated antigen and immunogen. J. Immunol. 139:3171-3176.

    Google Scholar 

  • O'Brien, J. S., Carson, G. S., Seo, H. C., Hiraiwa, M., and Kishimoto, T. (1994) Identification of prosaposin as a neurotrophic. Proc. Natl. Acad. Sci. USA 91:9593-9596.

    Google Scholar 

  • Parolini, I., Sargiacomo, M., Lisanti, M. P., and Peschle, C. (1996) Signal transduction and glycophosphatidylinositol-linked proteins (LYN, LCK, CD4, CD45, G proteins, and CD55) selectively localize in Triton-insoluble plasma membrane domains of human leukemic cell lines and normal granulocytes. Blood 87:3783-3794.

    Google Scholar 

  • Pavan, A., Mancini, P., Frati, L., Torrisi, M. R., and Pinto da Silva, P. (1989a) Molecular cytochemistry of CD3 and CD4 antigens in human lymphocytes as studied by label-fracture and by fracture-label. Biochim. Biophys. Acta 978:158-168.

    Google Scholar 

  • Pavan, A., Mancini, P., Cirone, M., Frati, L., Torrisi, M. R., and Pinto da Silva, P. (1989b) Capping of HLA antigens in human lymphocytes as followed by immunogold label-fracture. J. Histochem. Cytochem. 37:1489-1496.

    Google Scholar 

  • Pavan, A. et al. (1992a) Dynamics of transmembrane proteins during Sindbis virus budding. J. Cell. Sci. 102:149-155.

    Google Scholar 

  • Pavan, A., Lucania, G., Sansolini, T., Frati, L., and Torrisi, M. R. (1992b) Patching and capping of LFA-1 molecules on human lymphocytes. Histochemistry 98:253-258.

    Google Scholar 

  • Rosner, H., Greis, C. H., and Rodemann, H. P. (1990) Density-dependent expression of ganglioside GM3 by human skin fibroblasts in an all-or-none fashion, as a possible modulator of cell growth in vitro. Exp. Cell Res. 190:161-169.

    Google Scholar 

  • Sargiacomo, M., Sudol, M., Tang, Z. L., and Lisanti, M. P. (1993) Signal transducing molecules and glycosylphosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J. Cell. Biol. 122:789-807.

    Google Scholar 

  • Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387:569-572.

    Google Scholar 

  • Sorice, M. et al. (1997) Evidence for the existence of ganglioside-enriched plasma membrane domains in human peripheral lymphocytes. J. Lip. Res. 38:969-980.

    Google Scholar 

  • Sorice, M. et al. (1995) Monosialoganglioside GM3 induces CD4 internalization in human peripheral blood T lymphocytes. Scand. J. Immunol. 41:148-156.

    Google Scholar 

  • Stefanova, I. and Horejsi, V. (1991) Association of the CD59 and CD55 cell surface glycoproteins with other membrane molecules. J. Immunol. 147:1587-1592.

    Google Scholar 

  • Thompson, T. E., Allietta, M., Brown, R. E., Johnson, M. L., and Tillack, T. W. (1985) Organization of ganglioside GM1 in phosphatidylcholine bilayers. Biochim. Biophys. Acta 817:229-237.

    Google Scholar 

  • Tillack, T. W., Wong, M., Allietta, M., and Thompson, T. E. (1982) Organization of the glycosphingolipid asialo-GM1 in phosphatidylcholine bilayer. Biochim. Biophys. Acta 691:261-273.

    Google Scholar 

  • Usuki, S., Hoops, P., and Sweely, C. C. (1988) Growth control of human foreskin fibroblasts and inhibition of extracellular sialidase activity by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid. J. Biol. Chem. 263:10595-10599.

    Google Scholar 

  • Whisler, R. L. and Yates, A. J. (1980) Regulation of lymphocyte responses by human gangliosides: characteristics of inhibitory effects and the induction of impaired activation. J. Immunol. 125:2106-2111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorice, M., Garofalo, T., Misasi, R. et al. Glycosphingolipid Domains on Cell Plasma Membrane. Biosci Rep 19, 197–208 (1999). https://doi.org/10.1023/A:1020277820120

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020277820120

Navigation