Skip to main content
Log in

Modifications of Visual Evoked Potentials in Patients with Glaucoma

  • Published:
Neurophysiology Aims and scope

Abstract

We compared the visual evoked EEG potentials (VEP) elicited by presentation of a reversal chess pattern in patients with glaucoma and in the control group. Amplitudes, peak latencies of the main VEP components (N75, P100, and N145), interpeak intervals, and interpeak magnitudes were measured, and a spectral analysis of the averaged VEP was performed. In patients suffering from glaucoma, the latencies of the N75 and P100 components were greater, while the interpeak intervals P100-N145 and N75-N145 were shorter, than those in the control group. Glaucoma-related changes in the VEP spectral characteristics, in particular a drop in the spectral power of oscillations corresponding to the alpha rhythm, were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. M. Shamshinova and V. V. Volkov, Functional Methods in Ophthalmologic Examinations[in Russian], Meditsina, Moscow (1998).

    Google Scholar 

  2. L. C. Bray, K. W. Mitchell, J. W. Howe, and A. Gashau, “Visual function in glaucoma: a comparative evaluation of computerized static perimetry and the pattern of visual evoked potentials,” Clin. Vis. Sci., 7, 21-29 (1992).

    Google Scholar 

  3. V. N. Marinchev, “Visual field and the visual nerve in glaucoma,” Vestn. Oftalmol., No. 4, 79-82 (1978).

    Google Scholar 

  4. V. Parisia, “Impaired visual function in glaucoma,” Clin. Neurophysiol., 112, 351-358 (2001).

    Google Scholar 

  5. G. Jenkins and D. Watts, Spectral Analysis and Its Applications[Russian translation], Issue 2, Mir, Moscow (1972).

    Google Scholar 

  6. G. Box and G. Jenkins, Time Series Analysis: Forecasting and ControlHolden-Day, San Francisco (1976).

    Google Scholar 

  7. V. P. Borovikov and I. P. Borovikov, STATISTICA, Statistical Analysis and Data Processing within the Windows Medium[in Russian], Filin Inf.-Publ. House, Moscow (1997).

    Google Scholar 

  8. V. P. Borovikov, A Popular Introduction to the STATISTICA Program[in Russian], Computer Press, Moscow (1998).

    Google Scholar 

  9. G. N. Kryzhanovskii, E. M. Lipovetskaya, and O. P. Kopp, “A study of the role of the sympathetic nervous system in pathogenesis of experimental glaucoma,” Byull. Éksp. Biol. Med., 89,No. 5, 535-538 (1980).

    Google Scholar 

  10. G. Ya. Chernyavskii, Role of the Hypothalamus in Pathogenesis of Primary Glaucoma[in Russian], Abstr. of Doctoral Thesis, Med. Sci., Kyiv (1971).

    Google Scholar 

  11. V. V. Gnezditskii, Evoked Brain Potentials in Clinical Practice[in Russian], Publishing House of the TRTU, Taganrog (1977).

    Google Scholar 

  12. M. V. Aleksandrov, G. A. Sofronov, V. I. Shostak, et al., “Involvement of cholinergic mechanisms in the functioning of specific structures of the visual analyzer,” Fiziol. Cheloveka, 22,No. 2, 64-68 (1996).

    Google Scholar 

  13. Yu. A. Aref'eva, “Contrast and color sensitivity in the diagnostics of glaucoma: neurophysiological aspects,” Vestn. Oftalmol., No. 4, 49-51 (1998).

    Google Scholar 

  14. V. C. Greenstein, S. Seliger, V. Zemon, and R. Ritch, “Visual evoked potential assessment of the effects of glaucoma on visual subsystems,” Vis. Res., 38, 1901-1911 (1998).

    Google Scholar 

  15. V. G. Kolesnikov, Electronics. An Encyclopedic Vocabulary[in Russian], Sovetskaya Entsiklopedia, Moscow (1991).

    Google Scholar 

  16. K. A. Saltykov and I. A. Shevelev, “A simulation study of the mechanisms of tuning of visual cortex neurons to incomplete cross-like figures,” Zh. Vyssh. Nerv. Deyat., 51,No. 2, 174-181 (2001).

    Google Scholar 

  17. N. A. Lazareva, I. A. Shevelev, R. V. Novikova, et al., “A disinhibitory zone of the receptive field of a striate neuron and its sensitivity to a cross-like figure,” Sechenov Ross. Fiziol. Zh., 87,No. 4, 514-522 (2001).

    Google Scholar 

  18. A. K. Kharauzov, Yu. E. Shelepin, S. V. Pronin, et al., “Visual evoked potentials at dichoptic presentation of test sinusoidal lattices and a hindrance,” Sechenov Ross. Fiziol. Zh., 87,No. 2, 261-269 (2001).

    Google Scholar 

  19. G. A. Kuraev and V. V. Babenko, “Dependence of the threshold shift of the sinusoidal lattice on its spatio-temporal characteristics,” Fiziol. Cheloveka, 26,No. 4, 30-37 (2000).

    Google Scholar 

  20. V. D. Glezer, “On the role of spatio-frequency analysis, primitives, and interhemisphere asymmetry on identification of visual images,” Fiziol. Cheloveka, 26,No. 5, 145-150 (2000).

    Google Scholar 

  21. E. Basar, “Event-related oscillations are ‘real brain responses’ — wavelet analysis and new strategies,” Int. J. Psychophysiol., 39, 91-127 (2001).

    Google Scholar 

  22. V. N. Kiroi and E. I. Belova, “Mechanisms of formation of oscillatory activity of neuronal populations and its role in systemic brain activity,” Zh. Vyssh. Nerv. Deyat., 50, Issue 2, 179-191 (2000).

    Google Scholar 

  23. I. A. Shevelev, E. D. Bark, and V. M. Verkhlyutov, “Alpha scanning of the visual cortex: data of EEG and magneto-resonance tomography,” Sechenov Ross. Fiziol. Zh., 87,No. 8, 1050-1057 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snegir', M.A. Modifications of Visual Evoked Potentials in Patients with Glaucoma. Neurophysiology 34, 52–57 (2002). https://doi.org/10.1023/A:1020270025606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020270025606

Navigation