Skip to main content
Log in

Discovery of Some of the Biological Effects of Nitric Oxide and its Role in Cell Signaling

  • Published:
Bioscience Reports

Abstract

The role of nitric oxide in cellular signaling in the past 22 years has become one of the most rapidly growing areas in biology with more than 20,000 publications to date. Nitric oxide is a gas and free radical with an unshared electron that can regulate an ever-growing list of biological processes. In many instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis from GTP. However, the list of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. For example, nitric oxide can interact with transition metals such as iron, thiol groups, other free radicals, oxygen, superoxide anion, unsaturated fatty acids and other molecules. Some of these reactions result in the oxidation of nitric oxide to nitrite and nitrate to terminate its effect, while other reactions can lead to altered protein structure, function, and/or catalytic capacity. These diverse effects of nitric oxide that are either cyclic GMP dependent or independent can alter and regulate important physiological and biochemical events in cell regulation and function. Nitric oxide can function as an intracellular messenger, an autacoid, a paracrine substance, a neurotransmitter, or as a hormone that can be carried to distant sites for effects. Thus, it is a unique simple molecule with an array of signaling functions. However, as with any messenger molecule, there can be too little or too much of the substance and pathological events result. Some of the methods to regulate either nitric oxide formation, metabolism, or function have been in clinical use for more than a century as with the use of organic nitrates and nitroglycerin in angina pectoris that was initiated in the 1870's. Current and future research with nitric oxide and cyclic GMP will undoubtedly expand the clinicians' therapeutic armamentarium to manage a number of important diseases by perturbing nitric oxide and cyclic GMP formation and metabolism. Such promise and expectations have obviously fueled the interests in these signaling molecules for a growing list of potential therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hardman, J., Beavo, T., Gray, J., Chrisman, T., Patterson, W., and Sutherland, E. (1971) The formation and metabolism of cyclic GMP. Ann. N. Y. Acad. Sci. 185:27-35.

    Google Scholar 

  2. White, A. (1975) Guanylate cyclase activity in heart and lung. Adv. Cyclic Nucleotide Res. 5:353-373.

    Google Scholar 

  3. Appleman, M. and Terasaki, W. (1975) Regulation of cyclic nucleotide phosphodiesterase. Adv. Cyclic Nucleotide Res. 5:153-162.

    Google Scholar 

  4. Greengard, P. (1975) Cyclic nucleotides, protein phosphorylation and neuronal function. Adv. Cyclic. Nucleotide Res. 5:585-602.

    Google Scholar 

  5. Kimura, H. and Murad, F. (1974) Evidence for two different forms of guanylate cyclase in rat heart. J. Biol. Chem. 249:6910-6919.

    Google Scholar 

  6. Kimura, H. and Murad, F. (1975) Two forms of guanylate cyclase in mammalian tissues and possible mechanisms for their regulation. Metabolism 24:439-445.

    Google Scholar 

  7. Kimura, H. and Murad, F. (1975) Increased particulate and decreased soluble guanylate cyclase activity in regenerating liver, fetal liver, and hepatoma. Proc. Nat. Acad. Sci. 72:1965-1969.

    Google Scholar 

  8. Waldman, S. A. and Murad, F. (1987) Cyclic GMP synthesis and function. Pharm. Rev. 39:163-196.

    Google Scholar 

  9. Murad, F. (1994) Cyclic GMP Synthesis, Metabolism and Function, In: Adv. In Pharmacol. Vol. 26, Academic Press, pp. 1-335.

    Google Scholar 

  10. Murad, F. (1994) The role of nitric oxide in modulating guanylyl cyclase. Neurotransmission Vol. X, 1-4.

    Google Scholar 

  11. Ignarro, L. and Murad, F. (eds), (1995) Nitric Oxide: Biochemistry, Molecular Biology, and Therapeutic Implications. Advances in Pharmacology Volume 34, Academic Press, pp. 1-516.

  12. Chinkers, M. and Garbers, D. (1991) Signal Transduction by guanylyl cyclase. Ann. Rev. Biochem. 60:553-575.

    Google Scholar 

  13. Garbers, D. et al. (1988) The membrane form of guanylate cyclase. Cold Spring Harbor Symp. Quart. Biol. 53:993-1003.

    Google Scholar 

  14. Kimura, H., Mittal, C. K., and Murad, F. (1975) Activation of guanylate cyclase from rat liver and other tissues with sodium azide. J. Biol. Chem. 250:8016-8022.

    Google Scholar 

  15. Mittal, C. K., Kimura, H., and Murad, F. (1975) Requirement for a macromolecular factor for sodium azide activation of guanylate cyclase. J Cyclic Nucl. Res. 1:261-269.

    Google Scholar 

  16. Kimura, H., Mittal, C. K., and Murad, F. (1975) Increases in cyclic GMP levels in brain and liver with sodium azide, an activator of guanylate cyclase. Nature 257:700-702.

    Google Scholar 

  17. Kimura, H., Mittal, C. K., and Murad, F. (1976) Appearance of magnesium guanylate cyclase activity in rat liver with sodium-azide activation. J. Biol. Chem. 251:7769-7773.

    Google Scholar 

  18. Mittal, C. K., Kimura, H., and Murad, F. (1977) Purification and properties of a protein required for sodium azide activation of guanylate cyclase. J. Biol. Chem. 252:4348-4390.

    Google Scholar 

  19. Murad, F., Mittal, C. K., Arnold, W. P., Katsuki, S., and Kimura, H. (1978) Guanylate cyclase: Activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv. Cyclic Nucl. Res. 9:145-158.

    Google Scholar 

  20. Murad, F., Mittal, C. K., Arnold, W. P., Ichihara, K., Braughler, E., and El-Zayat, M. (1978) Properties and regulation of guanylate cyclase: Activation by azide, nitro compounds and hydroxyl radical and effects of heme containing proteins. Proc. of the NATO Adv. Study Inst. on Cyclic Nucleotides, Italy, 1977, in: Molecular Biology and Pharmacology of Cyclic Nucleotides (G. Folca and R. Paoletti, eds.), Elsevier, Amsterdam, pp. 33-42.

    Google Scholar 

  21. Murad, F., Mittal, C. K., Arnold, W. P., and Braughler, J. M. (1978) Effect of nitro-compound smooth muscle relaxants and other materials on cyclic GMP metabolism. Proc. of the 7th International Congress of Pharmacology, Paris, France, July, 1978, in: Advances in Pharmacology and Therapeutics, Vol. 3 Ions, Cyclic Nucleotides, Cholinergy J. C. Stocklet, ed., Pergamon Press, New York, pp. 123-132.

    Google Scholar 

  22. Katsuki, S., Arnold, W., Mittal, C. K., and Murad, F. (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J. Cyclic Nucl. Res. 3:23-35.

    Google Scholar 

  23. Katsuki, S., Arnold, W. P., Mittal, C. K., and Murad, F. (1977) Stimulation of formation and accumulation of cyclic GMP by smooth muscle relaxing agents. Proc. of the 2nd Japanese Cyclic Nucleotide Conference, July 7-9, pp. 44-50.

  24. Katsuki, S. and Murad, F. (1977) Regulation of cyclic 3′,5′-adnosine monophosphate and cyclic 3′,5′-guanosine monophosphate levels and contractility in bovine tracheal smooth muscle. Molecular Pharmacology 13:330-341.

    Google Scholar 

  25. Katsuki, S., Arnold, W. P. and Murad, F. (1977) Effect of sodium nitroprusside, nitroglycerin and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues. J. Cyclic Nucl. Res. 3:239-247.

    Google Scholar 

  26. Murad, F., Manganiello, V., and Vaughan, M. (1970) Effects of guanosine 3′,5′-monophosphate on glycerol production and accumulation of adenosine 3′,5′-monophosphate during incubation of fat cells. J. Biol. Chem. 245:3352-3360.

    Google Scholar 

  27. Manganiello, V., Murad, F., and Vaughan, M. (1971) Effects of lipolytic and antilipolytic agents on cyclic 3',5'-adenosine monophosphate in fat cells. J. Biol. Chem. 246:2195-2202.

    Google Scholar 

  28. Vaughan, M. and Murad, F. (1969) Adenyl cyclase activity in particles from fat cells. Biochemistry 8:3092-3099.

    Google Scholar 

  29. Furchgott, R. and Zarwodski, J. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle to acetylcholine. Nature 288:373-376.

    Google Scholar 

  30. Arnold, W. P., Mittal, C. K., Katsuki, S., and Murad, F. (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′,5′-monophosphate levels in various tissue preparations. Proc. Nat. Acad. Sci., USA 74:3203-3207.

    Google Scholar 

  31. Braughler, J. M., Mittal, C. K., and Murad, F. (1979) Purification of soluble guanylate cyclase from rat liver. Proc. Natl. Acad. Sci., USA 76:219-222.

    Google Scholar 

  32. Rapoport, R. M. and Murad, F. (1983) Agonist-induced endothelial-dependent relaxation in rat thoracic aorta may be mediated through cyclic GMP. Circ. Res. 52:352-357.

    Google Scholar 

  33. Rapoport, R. M. and Murad, F. (1983) Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: Role for cyclic GMP. J. Cyclic Nucl. and Protein Phosphor. Res. 9:281-296.

    Google Scholar 

  34. Rapoport, R. M., Draznin, M. B., and Murad, F. (1983) Endothelium-dependent vasodilator-and nitrovasodilator-induced relaxation may be mediated through cyclic GMP formation and cyclic GMP-dependent protein phosphorylation. Trans. Assoc. Amer. Phys. 96:19-30.

    Google Scholar 

  35. Rapoport, R. M., Draznin, M. B., and Murad, F. (1983) Endothelium dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306:274-276.

    Google Scholar 

  36. Fiscus, R. R., Rapoport, R. M., and Murad, F. (1983) Endothelium-dependent and nitrovasodilator-induced activation of cyclic GMP-dependent protein kinase in rat aorta. J. Cyclic Nucl. and Protein Phosphor. Res. 9:415-425.

    Google Scholar 

  37. Rapoport, R. M. and Murad, F. (1984) Effect of cyanide on nitrovasodilator-induced relaxation, cyclic GMP accumulation and guanylate cyclase activation in rat aorta. Europ. J. Pharm. 104:61-70.

    Google Scholar 

  38. Rapoport, R. M., Draznin, M., and Murad, F. (1982) Sodium nitroprusside-induced protein phosphorylation in intact rat aorta is mimicked by 8-bromo-cyclic GMP. Proc. Nat. Acad. Sci., USA 79:6470-6474.

    Google Scholar 

  39. Hirata, M., Kohse, K., Chang, C. H., Ikebe, T., and Murad, F. (1990) Mechanism of cyclic GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine aortic smooth muscle cells. J. Biol. Chem. 265:1268-1273.

    Google Scholar 

  40. Murad, F. (1986) Cyclic guanosine monophosphate as a mediator of vasodilation. J. Clin. Invest. 78:1-5.

    Google Scholar 

  41. Winquist, R. M., Faison, E. P., Waidman, S. A., Schwartz, K., Murad, F. and Rapoport, R. M. (1984) Atrial natriuretic factor elicits an endothelium independent relaxation and activates paniculate guanylate cyclase in vascular smooth muscle. Proc. Nat. Acad. Sci. 81:7661-7664.

    Google Scholar 

  42. Waidman, S. A., Rapoport, R. M., and Murad, F. (1984) Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol. Chem. 259:14332-14334.

    Google Scholar 

  43. Leitman, D. C., Molina, C. R., Waldman, S. A., and Murad, F. (1988) Atrial natriuretic peptide receptors and the guanylate cyclase-cyclic GMP system. Proc. of the UCLA Symposium on Atrial Natriuretic Factor in Biological and Molecular Aspects of Atrial Factors, UCLA Symposia on Molecular and Cellular Biology, 81:39-56.

    Google Scholar 

  44. Waldman, S. A. and Murad, F. (1987) Cyclic GMP synthesis and function. Pharm. Rev. 39:163-196.

    Google Scholar 

  45. Kuno, T. et al. (1986) Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J. Biol. Chem. 261:5817-5823.

    Google Scholar 

  46. Garbers, D. L. (1991) Guanyl cyclase linked receptors. Pharmacol. Ther. 50:337-345.

    Google Scholar 

  47. Degucci, T. and Yoshiako, M. (1982) L-arginine identified as an endogenous activator for soluble guanylate cyclase from neuroblastoma cells. J. Biol. Chem. 257:10147.

    Google Scholar 

  48. Hibbs, J., Traintor, R., and Vanin, Z. (1987) Macrophage cytotoxicity. Role for 1-arginine derminase and imino nitrogen activation to nitrate. Science 235:473.

    Google Scholar 

  49. Murad, F. (1988) The role of cyclic GMP in the mechanism of action of nitrovasodilators, endothelium-dependent agents and atrial natriuretic peptide. Biochemical Society Transactions 16:490-492.

    Google Scholar 

  50. Murad, F., Leitman, D., Waldman, S., Chang, C. H., Hirata, M., and Kohse, K. (1988) Effects of nitrovasodilators, endothelium-dependent vasodilators and atrial peptides on cGMP. Proc. Cold Spring Habor Symposium on Quantitative Biology, Signal Transduction 53:1005-1009.

    Google Scholar 

  51. Murad, F. (1989) Modulation of the guanylate cyclase-cGMP system by vasodilators and the role of free radicals as second messengers. Proc. of the NATO Advanced Studies Institute on Vascular Endothelium.-Receptors and Transduction Mechanisms. Porto Carros, Greece, June, 1988, in: Vascular Endothelium J. D. Catravas, C. N. Gillis and U. S. Ryan, eds. Plenum Pub. pp. 157-164.

  52. Murad, F. (1989) Mechanisms for hormonal regulation of the different isoforms of guanylate cyclase. Proc of the 40th Mosbach Colloquium on Molecular Mechanisms of Hormone Action Y. Gehring, E. Helmreich and G. Schultz, eds. Springer, Heidelberg, April 1989, pp. 186-194.

    Google Scholar 

  53. Bredt, D. and Snyder, S. (1990) Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc. Nat. Acad. Sci. USA 87:682-685.

    Google Scholar 

  54. Gorsky, L., Förstermann, U., Ishii, K., and Murad, F. (1990) Production of an EDRF-like activity in the cytosol of N1E-115 neuroblastoma cells. FASEB Journal 4:1494-1500.

    Google Scholar 

  55. Förstermann, U., Ishii, K., Gorsky, L. D., and Murad, F. (1989) The cytosol of N1E-115 neuroblastoma cells synthesizes and EDRF-like substance that relaxes rabbit aorta. Naunyn Schmiedbergs Arch. Pharmacol. 340:771-774.

    Google Scholar 

  56. Förstermann, U. et al. (1990) Hormone induced biosynthesis of Endothelium-derived relaxing factor-Nitric oxide-like material in N1E-115 neuroblastoma cells requires calcium and calmodulin. Molecular Pharmacology. 38:7-13.

    Google Scholar 

  57. Schmidt, H. H. H. W. et al. (1991) Purification of a soluble isoform of guanylyl cyclase-activatingfactor synthase. Proc. Nat. Acad. Sci. 88:365-369.

    Google Scholar 

  58. Stuehr, D., Cho, H., Kwon, N., Weise, M., and Nathans, C. (1991) Purification and characterization of the cytokine-induced macrophage nitric oxide synthase. Proc. Nat. Acad. Sci., USA 88:7773-7777.

    Google Scholar 

  59. Förstermann, U., Schmidt, H. H. H. W., Pollock, J. S., Heller, M., and Murad, F. (1991) Enzymes synthesizing guanylyl cyclase activating factor (GAF) in endothelial cells, neuroblastoma cells and rat brain. J. Cardiovasc. Pharmacol. 17 (Sup3), 557-564.

    Google Scholar 

  60. Förstermann, U. et al. (1990) Subcellular localization and regulation of the enzymes responsible for EDRF synthesis in endothelial cells and N1E-155 neuroblastoma cells. Eur. J. Pharmacol. 183:1625-1626.

    Google Scholar 

  61. Pollock, J. S. et al. (1991) Purification and characterization of particulate EDRF synthase from cultured and native bovine aortic endothelial cells. Proc. Nat. Acad. Sci., USA 88:10480-10484.

    Google Scholar 

  62. Förstemann, U., et al. (1991) Isoforms of EDRF/NO synthase: Characterization and purification from different cell types. Biochem. Pharmacol. 42:1849-1857.

    Google Scholar 

  63. Nakane, M., Mitchell, J. A., Förstermann, U., and Murad, F. (1991) Phosphorylation by calcium/calmodulin-dependent protein kinase II and protein kinase C modulates the activity of nitric oxide synthase. Biochem. Biophys. Res. Com. 180:1396-1402.

    Google Scholar 

  64. Pollock, J., Klinghofer, V., Förstermann, U., and Murad, F. (1992) Endothelial nitric oxide synthase is myristylated. FEBS. Lett. 309:402-404.

    Google Scholar 

  65. Robinson, L. J., Busconi, L., and Michel, T. (1995) Agonist-modulated palmitoylation of endothelial nitric oxide synthase. J. Biol. Chem. 270:995-998.

    Google Scholar 

  66. Shaul, P. W. et al. (1996) Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J. Biol. Chem. 271:6518-6522.

    Google Scholar 

  67. Xie, J., Roddy, P., Rife, T., Murad, F., and Young, A. (1995) Two closely linked but separate promoters for human neuronal nitric oxide synthase gene transcription. Proc. Natl. Acad. Sci. 92:1242-1246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

John S. Dunn Distinguished Chair in Medicine and Physiology, Regental Professor and Chair of Department of Integrative Biology, Pharmacology, and Physiology and Director of the Institute of Molecular Medicine

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murad, F. Discovery of Some of the Biological Effects of Nitric Oxide and its Role in Cell Signaling. Biosci Rep 19, 133–154 (1999). https://doi.org/10.1023/A:1020265417394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020265417394

Navigation