Skip to main content
Log in

Identifying the alien chromosomes in wheat – Leymus multicaulis derivatives using GISH and RFLP techniques

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genomic in situ hybridization (GISH) and restriction fragment length polymorphism (RFLP) were used to identify the Leymus multicaulis (XXNN, 2n = 28) chromosomes in wheat-L. muliticaulis derivatives. Fifteen lines containing L. multicaulis alien chromosomes or chromosomal fragments were identified. All alien chromosomes or fragments in these 15 lines were from the X genome and none were from the N genome. Eleven L. multicaulis disomic addition lines and four translocation-addition lines were identified with chromosome rearrangements among homoeologous groups 2, 3, 6 and 7. Only homoeologous group 1 lacked rearrangements in addition or translocation chromosomes. The results revealed that translocation in non-homoeologous chromosomes widely exists in the Triticeae and therefore it is necessary to identify the alien chromosomes (segments) in a wheat background using these combined techniques. During the course of the work, probe PSR112, was found to detect X genome addition lines involving L. multicaulischromosomes. This may prove to be a valuable probe for the identification of alien chromosomes in a wheat background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autrique, E., M.M. Nachit, N.P. Mnneveux, S.D. Tanksley & M.E. Sorrells, 1996. Geneti diversity in durum wheat based on RFLPs morphological traits, and coefficient of parentage. Crop Sci 36: 735–742.

    Article  Google Scholar 

  • Chao, S., P.J. Sharp, A.J. Worland, R.M.D. Koebner & M.D. Gale, 1989. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78: 485–504.

    Article  Google Scholar 

  • Chen, Q., R.H. Zhou, X.Q. RH., X.M. Yang & Y.S. Dong, 1988. First integeneric hybrid between Triticum aestivum and Psasrostachys junceae. Chin Sci Bull 33: 2071–2074.

    Google Scholar 

  • Devos, K.M., M.D. Atkinson, C.N. Chinoy, R.L. Harxourt, C.J. Liu & M.D. Gale, 1992. RFLP based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet 83: 931–030.

    Article  CAS  Google Scholar 

  • Devos, K.M., M.D. Atkinson, C.N. Chinoy, R.L. Harxourt, R.M.D. Koebner, C.J. Li, P. Masojc, D.X. Xie & M.D. Gale, 1993. Chromosome rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85: 673–680.

    CAS  Google Scholar 

  • Devos, K.M., T. Millan & M.D. Gale, 1993. Comparative RFLP maps of the homoeologous group 2 chromosomes of wheat, rye and barley. Theor Appl Genet 85: 784–792.

    CAS  Google Scholar 

  • Dong, Y.S. 1986. Study on hybridization of Triticum aestivum with Leymus multicaulis and Leymus racemosus. First Inter. Symp. Chromosome Engineerins. Pl, Xian, 185-187.

  • Gill, K.S., E.L. Lubbers, B.S. Gill, W.J. Raupp & T.S. Cox, 1991. A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). GENOME 34: 362–374.

    Google Scholar 

  • Jia, J.Z., Z.B. Zhang, K. Devos & M.D. Gale, 2001. Genetic diversity in 21 chromosomes of common wheat based on RFLP. Science in China (C) 31: 13–21.

    CAS  Google Scholar 

  • Jorge, D., M.-C. Luo, G.-Y. Zhong, R. Bransteitter, A. Desai, A. Kilian, A. Kleinhofs & J. Dvorak, 1996. Genetic map of diploid wheat, Triticum monococcum L. and its comparison with maps of Hordeum vulgare L. Genetics 143: 983–999.

    Google Scholar 

  • Law, C.N. & M.S. Wolfe, 1966. Location genetic of factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol 8: 462–470.

    Google Scholar 

  • Liu, C.J., K.M., Devos, C.N. Chinoy, M.D. Atkinosn & M.D. Gale, 1992. Non-homoeologous translocations between group 4,5 and 7 chromosomes in wheat and rye. Theor Appl Genet 83: 305–312.

    Article  Google Scholar 

  • McIntosh, R.A., 1988. Catalogue of Gene Symbols for Wheat. In: T.E. Miller & R.M.D. Koebner (Eds.), Proc. 7th Int.Wheat Genet Symp IPSR, Cambridge, UK. 2: pp. 1225–1323.

  • Raupp, W.J., B. Friebe & B.S. Gill, 1995. Suggested guidelines for the nomenclature and abbreviation of the genetic stocks of wheat, Triticum aesticum L. em Thell. and its relatives. Wheat Inf Serv 81: 50–55.

    Google Scholar 

  • Reader, S.M., S. Abbo, K.A. Pureler, I.P. King & T.E. Miller, 1994. Direct labeling of plant chromosomes by rapid in situ hybridization. Trends in Genet 10: 264–265.

    Google Scholar 

  • Sharp, P.J., S. Desai & M.D. Gale, 1988. Isozyme variation and RFLPS at the Á-amylase loci in wheat. Theor Appl Genet 76: 691–699.

    Article  CAS  Google Scholar 

  • Wang, X.E., P.D. Cheng, D.J. Liu, P. Zhang, B. Zhou, B. Friebe & B.S. Gill, 2001. Molecular cytogenetic characterization of Roegneria ciliaris chromosome in common wheat. Theor Appl Genet 102: 651–657.

    Article  CAS  Google Scholar 

  • Xie, D.X., K.M. Devos, C.J. Liu & M.D. Gale, 1993. RFLP-based genetic maps of the homoeologous group 5 chromosomes of bread wheat (Triticum aestivum L.) Theor Appl Genet 87: 70–74.

    Article  CAS  Google Scholar 

  • Zhou, R.H., Y.S. Dong, L.H. Li, X.Q. Li & X.M. Yang, 1992. Production and cytogenetic study on backross - 1 derivatives of interspecific hybrids between Triticum aestivum and Psasrostachys junceae. Cer Res Comm 20: 177–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, J., Zhou, R., Li, P. et al. Identifying the alien chromosomes in wheat – Leymus multicaulis derivatives using GISH and RFLP techniques. Euphytica 127, 201–207 (2002). https://doi.org/10.1023/A:1020262723618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020262723618

Navigation