Skip to main content
Log in

Synthetic Peptide Fragments as Probes for Structure Determination of Potassium Ion-Channel Proteins

  • Published:
Bioscience Reports

Abstract

Potassium channels are a diverse class of transmembrane proteins that are responsible for diffusion of potassium ion across cell membranes. The lack of large quantities of these proteins from natural sources, is a major hindrance in their structural characterization using biophysical techniques. Synthetic peptide fragments corresponding to functionally important domains of these proteins provide an attractive approach towards characterizing the structural organization of these ion-channels. Conformational properties of peptides from three different potassium channels (Shaker, ROMK1 and minK) have been characterized in aqueous media, organic solvents and in phospholipid membranes. Techniques used for these studies include FTIR, CD and 2D-NMR spectroscopy. FTIR spectroscopy has been a particularly valuable tool for characterizing the folding of the ion-channel peptides in phospholipid membranes; the three different types of potassium channels all share a common transmembrane folding pattern that is composed of a predominantly α-helical structure. There is no evidence to suggest the presence of any significant β-sheet structure. These results are in excellent agreement with the crystal structure of a bacterial potassium channel (Doyle, D. A. et al. (1998) Science 280:69–77), and suggest that all potassium channel proteins may share a common folding motif where the ion-channel structure is constructed entirely from α-helices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aggeli, A. et al. (1998) Biochemistry 37:8121–8131.

    Google Scholar 

  • Ben-Efraim, I. and Shai, Y. (1997) Biophys. J. 72:85–96.

    Google Scholar 

  • Bogusz, S., Boxer, A., and Busath, D. D. (1992) Protein Engineering 5:285–293.

    Google Scholar 

  • Brazier, S. P., Ramesh, B., Haris, P. I., Lee, D. C., and Srai, S. K. S. (1998) Biochem. J. 335:375–380.

    Google Scholar 

  • Carpino, L. A. and Han, G. Y. (1972) J. Org. Chem. 37:3404–3409.

    Google Scholar 

  • Cornell, B. A. et al. (1997) Nature 387:580–583.

    Google Scholar 

  • Doyle, D. A. et al. (1998) Science 280:69–77.

    Google Scholar 

  • Doak, D. G., Mulvey, D., Kawaguchi, K., Villalain, J., and Campbell, I. D. (1996) J. Mol. Biol. 258:672–687.

    Google Scholar 

  • Durrell, S. R. and Guy, H. R. (1992) Biophysical Journal 62:238–250.

    Google Scholar 

  • Durrell, S. R. and Guy, H. R. (1996) Neuropharmacol. 35:761–773.

    Google Scholar 

  • Franciolini, F. (1994) Biochim. Biophys. Acta 1197:227–236.

    Google Scholar 

  • Freeman, L. C. and Kass, R. S. (1993) Circ. Res. 73:968–973.

    Google Scholar 

  • Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E., and Khazanovich, N. (1993) Nature 366:324–327.

    Google Scholar 

  • Ghadiri, M. R., Granja, J. R., and Buehler, L. K. (1994) Nature 369:301–304.

    Google Scholar 

  • Guy, H. R. and Durrell, S. R. (1994) Biophysical Journal 66:Abstr. 248.

  • Haris, P. I. and Chapman, D. (1992) Trends in Biochemical Science 17:328–333.

    Google Scholar 

  • Haris, P. I., Lee, D. C., and Chapman, D. (1986) Biochim. Biophys. Acta 874:255–265.

    Google Scholar 

  • Haris, P. I., Ramesh, B., Sansom, S. P., Kerr, I. D., Srai, K. S., and Chapman, D. (1994a) Protein Engineering 7:255–262.

    Google Scholar 

  • Haris, P. I., Ramesh, B., Brazier, S., and Chapman, D. (1994b) FEBS Letters 349:371–374.

    Google Scholar 

  • Haris, P. I., Ramesh, B., and Chapman, D. (1996) Prog. Biophys. and Mol. Biol. 65:PC312.

    Google Scholar 

  • Haris, P. I. and Chapman, D. (1998a) in: Biomembrane Structures (Haris, P. I. and Chapman, D., eds.), IOS Press, Amsterdam, pp. 134–168.

    Google Scholar 

  • Haris, P. I. and Chapman, D. (1998b) in: New Biomedical Materials (Haris, P. I. and Chapman, D., eds.), IOS Press, Amsterdam, pp. 24–31.

    Google Scholar 

  • Haris, P. I., Wechselberger, R., and Czisch, M. (1998) Biochem. Soc. Trans. 26: S358. Structure of the S4 and S4–S5 loop region of a voltage-gated potassium channel.

    Google Scholar 

  • Hartmann, H. A., Kirsch, G. E., Drewe, J. A., Taglialatela, M., Joho, R. H., and Brown, A. M. (1991) Science 251:942–944.

    Google Scholar 

  • Heginbotham, L., Lu, Z., Abramson, T., and MacKinnon, R. (1994) Biophysical Journal 66:1061–1067.

    Google Scholar 

  • Ho, K. et al. (1993) Nature 362:31–37.

    Google Scholar 

  • Jackson, M., Haris, P. I., and Chapman, D. (1991) Biochemistry 30:9681–9686.

    Google Scholar 

  • Kirsch, G. E. et al. (1992) Neuron 8:499–505.

    Google Scholar 

  • Lopez, G. A., Jan, Y. N., and Jan, L. Y. (1994) Nature 367:179–182.

    Google Scholar 

  • Lu, Q. and Miller, C. (1995) Science 268:310–317.

    Google Scholar 

  • Mercer, E. A. J., Brazier, S., Abbott, G. W., Ramesh, B., Haris, P. I., and Srai, S. K. S. (1997) Biochem J. 325:475–479.

    Google Scholar 

  • Merrifield, R. B. (1963) Journal of the American Chemical Society 85:2149–2154.

    Google Scholar 

  • Montal, M. (1995) Ann. Rev. Biophys. Biomol. Struct. 24:31–57.

    Google Scholar 

  • Pongs, O. (1992) Physiol. Rev. 72:S69–S88.

    Google Scholar 

  • Pragnell, M. et al. (1990) Neuron 4:807–812.

    Google Scholar 

  • Sanders, J. C., Haris, P. I., Chapman, D., Otto, C., and Hemminga, M. A. (1993) Biochemistry 32:12446–12454.

    Google Scholar 

  • Sansom, M. S. P. (1991) Prog. Biophys. Molec. Biol. 55:139–235.

    Google Scholar 

  • Slesinger, P., Jan, Y. N., and Jan, L. Y. (1993) Neuron 11:739–749.

    Google Scholar 

  • Sugimoto, T. et al. (1990) J. Membr. Biol. 113:39–47.

    Google Scholar 

  • Taglialatela, M., Wible, B. A., Caporaso, R., and Brown, A. M. (1994) Science 264:844–847.

    Google Scholar 

  • Takumi, T., Ohkubo, H., and Nakanishi, S. (1988) Science 242:1042–1045.

    Google Scholar 

  • Wilson, G. W., Sivaprasadarao, A., Findlay, J. B. C., and Wray, D. (1994) FEBS Lett. 353:251–254.

    Google Scholar 

  • Yang, J., Jan, Y. N., and Jan, L. Y. (1995) Neuron 15:1441–1447.

    Google Scholar 

  • Yellen, G., Jurman, M. E., Abramson, T., and MacKinnon, R. (1991) Science 251:939–942.

    Google Scholar 

  • Yool, A. J. and Schwarz, T. L. (1991) Nature 349:700–704.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haris, P.I. Synthetic Peptide Fragments as Probes for Structure Determination of Potassium Ion-Channel Proteins. Biosci Rep 18, 299–312 (1998). https://doi.org/10.1023/A:1020257215577

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020257215577

Navigation