Skip to main content
Log in

Thermal Degradation Mechanism of Low-Density Polyethylene Plastic Wastes in Cyclohexane

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The thermal LDPE degradation mechanism harnessing a high-pressure autoclave surrounded by a furnace was investigated in this work. Rates of formation of gas, liquid, and solid during degradation of PE plastic wastes in cyclohexane as solvent at 400 and 425°C have been experimentally determined. Four reaction mechanisms have been proposed and tested to estimates of gas, liquid, and solid. Proposed mechanisms are based on the assumption that the reactions are pseudo-first-order with respect to the reacting species. Pseudo-first-order rate constants for each of the indicated mechanistic steps have been calculated by nonlinear regression analysis. The best fit was obtained by model 2 (pure parallel reaction mechanism), and its activation energy was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Grignaschi (1988) Resources, Conservation and Recycling 2, 17-25.

    Google Scholar 

  2. T. R. Curlee (1989) J. Environmental Syst. 18, 193-212.

    Google Scholar 

  3. UNEP Industry and Environment (1994) Waste Recycling April–June, 32-36.

  4. D. S. Scott, S. R. Czernik, J. Piskorz, and A. G. Radlein (1990) Energy & Fuels 4, 407-411.

    Google Scholar 

  5. D. S. Scott, P. Majerski, J. Piskorz, D. Radlein, and M. Barnickel (1999) The Can. J. Chem. Eng. 77, 1021-1027.

    Google Scholar 

  6. M. Blazso (1997) J. Anal. Appl. Pyrolysis 39, 1-25.

    Google Scholar 

  7. P. T. Williams and E. A. Williams (1999) J. Anal. Appl. Pyrolysis 51, 107-126.

    Google Scholar 

  8. F. Pinto, P. Costa, I. Gulyurtlu, and I. Cabrita (1999) J. Anal. Appl. Pyrolysis 51, 39-55.

    Google Scholar 

  9. C. M. Simon, W. Kaminsky, and B. Schlesselmann (1996) J. Anal. Appl. Pyrolysis 38, 75-87.

    Google Scholar 

  10. Y. Sakata, M. A. Uddin, and A. Muto (1999) J. Anal. Appl. Pyrolysis 51, 135-155.

    Google Scholar 

  11. J. K. Koo, S. W. Kim, and Y. H. Seo (1991) Resources, Conservation and Recycling 5, 365-382.

    Google Scholar 

  12. H. Bockorn, A. Hornung, U. Hornung, and D. Schawaller (1999) J. Anal. Appl. Pyrolysis 48, 93-109.

    Google Scholar 

  13. T. Faravelli, G. Bozzano, C. Scassa, M. Perego, S. Fabini, E. Ranzi, and M. Dente (1999) J. Anal. Appl. Pyrolysis 52, 87-103.

    Google Scholar 

  14. M. A. Shalabi, R. M. Baldwin, R. L. Bain, J. H. Gary, and J. O. Golden (1979) Ind. Eng. Chem. Process Des. Dev. 18, 474-479.

    Google Scholar 

  15. K. Ceylan and A. Olcay (1998) Fuel Proc. Tech. 53, 183-195.

    Google Scholar 

  16. T. Murakata, Y. Saito, T. Yosikawa, T. Suzuki, and S. Sato (1993) Polymer 34, 1436-1439.

    Google Scholar 

  17. SAS (1989) SAS Institute Inc., CArry N. C., U.S.A.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Karaduman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaduman, A., Şimşek, E.H. Thermal Degradation Mechanism of Low-Density Polyethylene Plastic Wastes in Cyclohexane. Journal of Polymers and the Environment 9, 85–90 (2001). https://doi.org/10.1023/A:1020252806505

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020252806505

Navigation