Neurochemical Research

, Volume 27, Issue 7–8, pp 637–647 | Cite as

Ganglioside Function in Calcium Homeostasis and Signaling

  • Robert W. Ledeen
  • Gusheng Wu
Article

Abstract

Ganglioside function in eukaryotic cells encompasses a variety of modulatory interactions related to both development and mature cellular behavior. In relation to the nervous system this includes induction of neurite outgrowth and trophic/neuroprotective phenomena; more generally this applies to ganglioside effects on receptor function, adhesion reactions, and signal transduction mechanisms in neural and extraneural systems. Underlying many of these trophic effects are ganglioside-induced changes in cellular calcium, accomplished through modulation of Ca2+ influx channels, Ca2+ exchange proteins, and various Ca2+-dependent enzymes that are altered through association with gangliosides. A clear distinction needs to be drawn between intrinsic functions of gangliosides as naturally expressed by the cell and activities created by application of exogenous ganglioside(s) that may or may not reflect natural function. This review attempts to summarize findings in this area and point to possible future directions of research.

Gangliosides GM1 ganglioside calcium calcium homeostasis calcium signaling nuclear calcium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Svennerholm, L. 1963. Chromatographic separation of human brain gangliosides. J. Neurochem. 10:613-623.Google Scholar
  2. 2.
    Wu, G., Lu, Z.-H., Xie, X., Li, L., and Ledeen, R. W. 2001. Mutant NG108-15 cells (NG-CR72) deficient in GM1 synthase respond aberrantly to axonogenic stimuli and are vulnerable to calcium-induced apoptosis: They are rescued with Liga-20. J. Neurochem. 76:690-702.Google Scholar
  3. 3.
    Wu, G., Xie, X., Lu, Z. H., and Ledeen, R. W. 2001. Cerebellar neurons lacking complex gangliosides degenerate in the presence of depolarizing levels of potassium. Proc. Natl. Acad. Sci. U.S.A. 98:307-312.Google Scholar
  4. 4.
    Minke, W. E., Roach, C., Hol. W. G., and Verlinde, C. L. 1999. Structure-based exploration of the ganglioside GM1 binding sites of Escherichia coli heat-labile enterotoxin and cholera toxin for the discovery of receptor antagonists. Biochemistry 38:5684-5692.Google Scholar
  5. 5.
    Wu, G., Lu, Z.-H., Wei, T. J., Howells, R. D., Christoffers, K., and Ledeen, R. W. 1998. The role of GM1 ganglioside in regulating excitatory opioid effects. Ann. N Y Acad. Sci. 845:126-138.Google Scholar
  6. 6.
    Sonnino, S., Chigorno, V., Acquotti, D., Pitto, M., Kirschner, G., and Tettamanti, G. 1989. A photoreactive derivative of radiolabeled GM1 ganglioside: Preparation and use to establish the involvement of specific proteins in GM1 uptake by human fibroblasts in culture. Biochemistry 28:77-84.Google Scholar
  7. 7.
    Wu, G. and Ledeen, R. W. 1991. Stimulation of neurite outgrowth in neuroblastoma cells by neuraminidase: Putative role of GM1 ganglioside in differentiation. J. Neurochem. 56:95-104.Google Scholar
  8. 8.
    Wu, G. and Ledeen, R. W. 1994. Gangliosides as modulators of neuronal calcium. Prog. Brain Res. 101:101-112.Google Scholar
  9. 9.
    Fang, Y., Wu, G., Xie, X., Lu, Z.-H., and Ledeen, R. W. 2000. Endogenous GM1 ganglioside of the plasma membrane promotes neuritogenesis by two mechanisms. Neurochem. Res. 25:931-940.Google Scholar
  10. 10.
    Wu, G., Fang, Y., Lu, Z.-H., and Ledeen, R. W. 1998. Induction of axon-like and dendrite-like processes in neuroblastoma cells. J. Neurocytol. 27:1-14.Google Scholar
  11. 11.
    Tang, C.-M., Presser, F., and Morad, M. 1988. Amiloride selectively blocks the low threshold (T) calcium channel. Science 240:213-215.Google Scholar
  12. 12.
    Hasegawa, T., Yamaguchi, K., Wada, T., Takeda, A., Itoyama, Y., and Miyagi, T. 2000. Molecular cloning of mouse ganglioside sialidase and its increased expression in Neuro2a cell differentiation. J. Biol. Chem. 275:8007-8015.Google Scholar
  13. 13.
    Rodriguez, J. A., Piddini, E., Hasegawa, T., Miyagi, T., and Dotti, C. G. 2001. Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J. Neurosci. 21:8387-8395.Google Scholar
  14. 14.
    Langer, G. A., Frank, J. S., Nudd, L. M., and Seraydarian, K. 1976. Sialic acid: Effect of removal on calcium exchangeability of cultured heart cells. Science 193:1013-1015.Google Scholar
  15. 15.
    Nathan, R. D., Fung, S. J., Stocco, D. M., Barron, E. A., and Markwald, R. R. 1980. Sialic acid: Regulation of electrogenesis in cultured heart cells. Am. J. Physiol. 239:C197-C207.Google Scholar
  16. 16.
    Yee, H. F., Weiss, J. N., and Langer, G. A. 1989. Neuraminidase selectively enhances transient Ca2+ current in cardiac myocytes. Am. J. Physiol. 256:C1267-C1272.Google Scholar
  17. 17.
    Marengo, F. D., Wang, S.-Y., Wang, B., and Langer, G. A. 1998. Dependence of cardiac cell Ca2+ permeability on sialic acid-containing sarcolemmal gangliosides. J. Mol. Cell. Cardiol. 30:127-137.Google Scholar
  18. 18.
    Dixon, S. J., Stewart, D., Grinstein, S., and Spiegel, S. 1987. Transmembrane signaling by the B subunit of cholera toxin: Increased cytoplasmic free calcium in rat lymphocytes. J. Cell Biol. 105:1153-1161.Google Scholar
  19. 19.
    Spiegel, S. and Fishman, P. H. 1987. Gangliosides as bimodal regulators of cell growth. Proc. Natl. Acad. Sci. U.S.A. 84:141-145.Google Scholar
  20. 20.
    Spiegel, S. and Panagiotopoulos, C. 1988. Mitogenesis of 3T3 fibroblasts induced by endogenous gangliosides is not mediated by cAMP, protein kinase C, or phosphoinositides turnover. Exp. Cell Res. 177:414-427.Google Scholar
  21. 21.
    Carlson, R. O., Masco, D., Brooker, G., and Spiegel, S. 1994. Endogenous ganglioside GM1 modulates L-type calcium channel activity in N18 neuroblastoma cells. J. Neurosci. 14:2272-2281.Google Scholar
  22. 22.
    Milani, D., Minozzi, M.-C., Petrelli, L., Guidolin, D., Skaper, S. D., and Spoerii, P. E. 1992. Interaction of ganglioside GM1 with the B subunit of cholera toxin modulates intracellular free calcium in sensory neurons. J. Neurosci. Res. 33:466-475.Google Scholar
  23. 23.
    Wu, G., Lu, Z.-H., Nakamura, K., Spray, D. C., and Ledeen, R. W. 1996. Trophic effect of cholera toxin B subunit in cultured cerebellar granule neurons: Modulation of intracellular calcium by GM1 ganglioside. J. Neurosci. Res. 44:243-254.Google Scholar
  24. 24.
    Quattrini, A., Lorenzetti, I., Sciorati, C., Corbo, M., Previtali, S. C., Feltri, M. L., Canal, N., Wrabetz, L., Nemni, R., and Clementi, E. 2001. Human IgM anti-GM1 autoantibodies modulate intracellular calcium homeostasis in neuroblastoma cells. J. Neuroimmunol. 114:213-219.Google Scholar
  25. 25.
    Nedelkoska, L. and Benjamins, J. A. 1998. Binding of cholera toxin B subunit: A surface marker for murine microglia but not oligodendrocytes or astrocytes. J. Neurosci. Res. 53:605-612.Google Scholar
  26. 26.
    Skoff, A. M. and Benjamins, J. A. 1998. Antibodies to glycolipids and cholera toxin B subunit do not initiate Ca++ signaling in rat Schwann cells. J. Peripher. Nerv. Syst. 3:19-27.Google Scholar
  27. 27.
    Ravichandra, B. and Joshi, P. G. 1999. Regulation of transmembrane signaling by ganglioside GM1: Interaction of anti-GM1 with Neuro2a cells. J. Neurochem. 73:557-567.Google Scholar
  28. 28.
    McNamara, N., Khong, A., McKemy, D., Caterina, M., Boyer, J., Julius, D., and Basbaum, C. 2001. ATP transduces signals from ASGM1, a glycolipid that functions as a bacterial receptor. Proc. Natl. Acad. Sci. U.S.A. 98:9086-9091.Google Scholar
  29. 29.
    Naiki, M., Marcus, D. M., and Ledeen, R. 1974. Properties of antisera to ganglioside GM1 and asialo GM1. J. Immunol. 113:84-93.Google Scholar
  30. 30.
    Fang, Y., Xie, X., Ledeen, R. W., and Wu, G. Characterization of cholera toxin B subunit-induced Ca2+ influx in neuroblastoma cells: Evidence for a voltage independent GM1-associated Ca2+ channel. J. Neurosci. Res. In press. 2002.Google Scholar
  31. 31.
    Ledeen, R. W. 1978. Ganglioside structures and distribution: Are they localized at the nerve ending? J. Supramol. Struc. 8:1-7.Google Scholar
  32. 32.
    Skrivanek, J. A., Ledeen, R. W., Margolis, R. U., and Margolis, R. K. 1982. Gangliosides associated with microsomal subfractions of brain: Comparison with synaptic plasma membranes. J. Neurobiol. 13:95-106.Google Scholar
  33. 33.
    Frieder, B. and Rapport, M. M. 1987. The effect of antibodies to gangliosides on Ca2+ channel-linked release of g-aminobutyric acid in rat brain slices. J. Neurochem. 48:1048-1052.Google Scholar
  34. 34.
    Wieraszko, A. and Seifert, W. 1985. The role of monosialoganglioside GM1 in the synaptic plasticity: In vitro study on rat hippocampal slices. Brain Res. 345:159-164.Google Scholar
  35. 35.
    Wieraszko, A. and Seifert, W. 1986. Evidence for the functional role of monosialioganglioside GM1 in synaptic transmission in the rat hippocampus. Brain Res. 371:305-313.Google Scholar
  36. 36.
    Hwang, H.-M., Wang, J.-T., and Chiu, T.-H. 1992. Effects of exogenous GM1 ganglioside on LTP in rat hippocampal slices perfused with different concentration of calcium. Neurosci. Lett. 141:227-230.Google Scholar
  37. 37.
    Rahmann, H. 1983. Functional implication of gangliosides in synaptic transmission. Neurochem. Int. 5:539-547.Google Scholar
  38. 38.
    Langer, M., Winiski, A., Eisenberg, M., McLaughlin, A., and McLaughlin, S. 1988. The electrostatic potential adjacent to bilayer membranes containing either charged phospholipids or gangliosides. Pages 121-131, In Ledeen, R. W., Hogan, E. L., Tettamanti, G., Yates, A. J., and Yu, R. K. (eds.), New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects. Liviana Press, Padova.Google Scholar
  39. 39.
    Abramson, M. B., Yu, R. K., and Zaby, V. 1972. Ionic properties of beef brain gangliosides. Biochim. Biophys. Acta 280:365-372.Google Scholar
  40. 40.
    Takamiya, K., Yamamoto, A., Furukawa, K., Yamashiro, S., Shin, M., Okada, M., Fukumoto, S., Haraguchi, M., Takeda, N., Fujimura, K., Sakae, M., Kishikawa, M., Shiku, H., Furukawa, Ko., and Aizawa, S. 1996. Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc. Natl. Acad. Sci. U.S.A. 93:10662-10667.Google Scholar
  41. 41.
    Liu, Y., Wada, R., Kawai, H., Sango, K., Deng, C., Tai, T., McDonald, M. P., Araujo, K., Crawley, J. N., Bierfreund, U., Sandhoff, K., Suzuki, K., and Proia, R. L. 1999. A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder. J. Clin. Invest 103:497-505.Google Scholar
  42. 42.
    Sheikh, K. A., Sun, J., Liu, Y., Kawai, H., Crawford, T. O., Proia, R. L., Griffin, J. W., and Schnaar, R. L. 1999. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc. Natl. Acad. Sci. U.S.A. 96:7532-7537.Google Scholar
  43. 43.
    Chiavegatto, S., Sun, J., Nelson, R. J., and Schnaar, R. L. 2000. A functional role for complex gangliosides: Motor deficits in GM2/GD2 synthase knockout mice. Exp. Neurol. 166:227-234.Google Scholar
  44. 44.
    Golard, A. 1998. Anti-GM3 antibodies activate calcium inflow and inhibit platelet-derived growth factor beta receptors (PDGF br) in T51B rat liver epithelial cells. Glycobiology 8:1221-1225.Google Scholar
  45. 45.
    Muthing, J., Maurer, U., and Weber-Schurholz, S. 1998. Glycosphingolipids of skeletal muscle: II. Modulation of Ca2+-flux in triad membranes by gangliosides. Carbohydr. Res. 307:147-157.Google Scholar
  46. 46.
    Wang, Y., Tsui, Z., and Yang, F. 1999. Antagonistic effect of ganglioside GM1 and GM3 on the activity and conformation of sarcoplasmic reticulum Ca2+-ATPase. FEBS Lett. 457:144-148.Google Scholar
  47. 47.
    Wang, Y., Tsui, Z., and Yang, F. 1999. Mechanistic study of modulation of SR Ca2+-ATPase activity by gangliosides GM1 and GM3 through some biophysical measurements. Glycoconj. J. 16:781-786.Google Scholar
  48. 48.
    Xie, X., Wu, G., Lu, Z.-H., and Ledeen, R. W. 2002. Potentiation of sodium-calcium exchanger in the nuclear envelope by nuclear GM1 ganglioside. J. Neurochem. 81:1185-1195.Google Scholar
  49. 49.
    Facci, L., Leon, A., Toffano, G., Sonnino, S., Ghidoni, R., and Tettamanti, G. 1984. Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J. Neurochem.</del> 42:299-305.Google Scholar
  50. 50.
    Riboni, L., Bassi, R., Conti, M., and Tettamanti, G. 1993. Metabolism of exogenous ganglioside GM1 in cultured cerebellar granule cells. The fatty acid and sphingosine moieties formed during degradation are re-used for lipid biosynthesis. FEBS Lett. 322:257-260.Google Scholar
  51. 51.
    Mobius, W., Herzog, V., Sandhoff, K., and Schwarzmann, G. 1999. Gangliosides are transported from the plasma membrane to intralysosomal membranes as revealed by immuno-electron microscopy. Biosci. Rep. 19:307-316.Google Scholar
  52. 52.
    Byrne, M. C., Ledeen, R. W., Roisen, F. J., Yorke, G., and Sclafani, J. R. 1983. Ganglioside-induced neuritogenesis: Verification that gangliosides are the active agents, and comparison of molecular species. J. Neurochem. 41:1214-1222.Google Scholar
  53. 53.
    Wu, G., Vaswani, K. K., Lu, Z.-H., and Ledeen, R. W. 1990. Gangliosides stimulate calcium flux in Neuro-2A cells and require exogenous calcium for neuritogenesis. J. Neurochem. 55:484-491.Google Scholar
  54. 54.
    Spoerri, P. E., Dozier, A. K., and Roisen, F. J. 1990. Calcium regulation of neuronal differentiation: The role of calcium in GM1-mediated neuritogenesis. Devl. Brain Res. 56:177-188.Google Scholar
  55. 55.
    Guerold, B., Massarelli, R., Forster, V., Freysz, L., and Dreyfus, H. 1992. Exogenous gangliosides modulate calcium fluxes in cultured neuronal cells. J. Neurosci. Res. 32:110-115.Google Scholar
  56. 56.
    Cannella, M. S., Roisen, F. J., Ogawa, T., Sugimoto, M., and Ledeen, R. W. 1988. Comparison of epi-GM3 with GM3 and GM1 as stimulators of neurite outgrowth. Devl. Brain Res. 39:137-143.Google Scholar
  57. 57.
    Cannella, M. S., Acher, M. S., and Ledeen, R. W. 1988. Stimulation of neurite outgrowth in vitro by a glycero-ganglioside. Int. J. Dev. Neurosci. 6:319-326.Google Scholar
  58. 58.
    Kozireski-Chubak, D. F., Wu, G., and Ledeen, R. W. 1999. Upregulation of nuclear GM1 accompanies axon-like, but not dendrite-like, outgrowth in NG108-15 cells. J. Neurosci. Res. 55:107-118.Google Scholar
  59. 59.
    Wu, G., Lu, Z.-H., Alfinito, P., and Ledeen, R. W. 1997. Opioid receptor and calcium channel regulation of adenylyl cyclase, modulated by GM1, in NG108-15 cells: Competitive interactions. Neurochem. Res. 22:1281-1289.Google Scholar
  60. 60.
    Doherty, P., Ashton, S. V., Skaper, S. D., Leon, A., and Walsh, F. S. 1992. Ganglioside modulation of neural cell adhesion molecule and N-cadherin-dependent neurite outgrowth. J. Cell Biol. 117:1093-1099.Google Scholar
  61. 61.
    Tanaka, Y., Waki, H., Kon, K., and Ando, S. 1997. Gangliosides enhance KCl-induced Ca2+ influx and acetylcholine release in brain synaptosomes. Neuroreport 8:2203-2207.Google Scholar
  62. 62.
    Tanaka, Y. and Ando, S. 1996. Modulation of cholinergic synaptic functions by sialycholesterol. Glycoconj. J. 13:321-326.Google Scholar
  63. 63.
    Isasi, S. C., Bianco, I. D., and Fidelio, G. D. 1995. Gangliosides raise the intracellular Ca2+ level in different cell types. Life Sci. 57:449-456.Google Scholar
  64. 64.
    Vasylevskaya, V. V., Bochkov, V. N., Prokazova, N. V., and Tkachuk, A. 1992. Characteristics and regulation of ganglioside-induced elevation of free cytoplastomic Ca2+ in human blood platelets. Biochim. Biophys. Acta 1127:221-225.Google Scholar
  65. 65.
    Dawson, T. M., Hung, K., Dawson, V. L., Steiner, J. P., and Snyder, S. H. 1995. Neuroprotective effects of gangliosides may involve inhibition of nitric oxide synthase. Ann. Neurol. 37:115-118.Google Scholar
  66. 66.
    Ferrari, G., Anderson, B. L., Stephens, R. M., Kaplan, D. R., and Greene, L. A. 1995. Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors. J. Biol. Chem. 270:3074-3080.Google Scholar
  67. 67.
    Cavallini, L., Venerando, R., Miotto, G., and Alexandre, A. 1999. Ganglioside GM1 protection from apoptosis of rat heart fibroblasts. Arch. Biochem. Biophys. 370:156-162.Google Scholar
  68. 68.
    Muraki, K. and Imaizumi, Y. 2001. A novel function of sphingosine-1-phosphate to activate a non-selective cation channel in human endothelial cells. J. Physiol. 537:431-441.Google Scholar
  69. 69.
    Guan, Z., Stokes, B. T., Brocklyn, J. R. V., and Yates, A. J. 1992. Gangliosides inhibit platelet-derived growth-factorstimulated increase in intracellular calcium in Swiss 3T3 cells. Biochim. Biophys. Acta 1136:315-318.Google Scholar
  70. 70.
    Bremer, E. G., Hakomori, S.-I., Bowen-Pope, D. F., Raines, E., and Ross, R. 1984. Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J. Biol. Chem. 259:6818-6825.Google Scholar
  71. 71.
    Favaron, M., Manev, H., Alho, H., Bertolino, M., Ferret, B., Guidotti, A., and Costa, E. 1988. Gangliosides prevent glutamate and kainate neurocytoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex. Proc. Natl. Acad. Sci. U.S.A. 85:7351-7355.Google Scholar
  72. 72.
    De Erausquin, G. A., Manev, H., Guidotti, A., Costa, E., and Brooker, G. 1990. Gangliosides normalize distorted single-cell intracellular free Ca2+ dynamics after toxic doses of glutamate in cerebellar granule cells. Proc. Natl. Acad. Sci. U.S.A. 87:8017-8021.Google Scholar
  73. 73.
    Manev, H., Favaron, M., Vicini, S., Guidotti, A., and Costa, E. 1990. Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: Protection by synthetic derivatives of endogenous sphingolipids. J. Pharmacol. Exp. Ther. 252:419-427.Google Scholar
  74. 74.
    Ryu, B. R., Choi, D. W., Hartley, D. M., Costa, E., Jou, I., and Gwag, B. J. 1999. Attenuation of cortical neuronal apoptosis by gangliosides. J. Pharmacol. Exp. Ther. 290:811-816.Google Scholar
  75. 75.
    Marks, N., Berg, M. J., Guidotti, A., and Saito, M. 1998. Activation of caspase-3 and apoptosis in cerebellar granule cells. J. Neurosci. Res. 52:334-341.Google Scholar
  76. 76.
    Avrova, N. F., Victorov, I. V., Tyurin, V. A., Zakharova, I. O., Sokolova, T. V., Andreeva, N. A., Stelmaschuk, E. V., Tyurina, Y. Y., and Gonchar, V. S. 1998. Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: Possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes. Neurochem. Res. 23:945-952.Google Scholar
  77. 77.
    Nakamura, K., Wu, G., and Ledeen, R. W. 1992. Protection of Neuro-2a cells against calcium ionophore cytotoxicity by gangliosides. J. Neurosci. Res. 31:245-253.Google Scholar
  78. 78.
    Karpiak, S. E., Wakade, A., Tagliavia, A., and Mahadik, S. P. 1991. Temporal changes in edema, Na+, K+, and Ca++, in focal cortical stroke: GM1 ganglioside reduces ischemic injury. J. Neurosci. Res. 30:512-520.Google Scholar
  79. 79.
    Shen, K.-F. and Crain, S. M. 1990. Cholera toxin-B subunit blocks opioid excitatory effects on sensory neuron action potentials indicating the GM-1 ganglioside may regulate Gslinked opioid receptor functions. Brain Res. 531:1-7.Google Scholar
  80. 80.
    Shen, K.-F., Crain, S. M., and Ledeen, R. W. 1991. Brief treatment of sensory neurons with GM1 ganglioside enhances the efficacy of opioid excitatory effects on the action potential. Brain Res. 559:130-138.Google Scholar
  81. 81.
    Leon, A., Facci, L., Toffano, G., Sonnino, S., and Tettamanti, G. 1981. Activation of (Na+, K+)-ATPase by nanomolar concentrations of GM1 ganglioside. J. Neurochem. 37:350-357.Google Scholar
  82. 82.
    Hilbush, B. S. and Levine, J. M. 1992. Modulation of a Ca2+ signaling pathway by GM1 ganglioside in PC12 cells. J. Biol. Chem. 267:24789-24795.Google Scholar
  83. 83.
    Wu, G., Lu, Z.-H., and Ledeen, R. W. 1995. Induced and spontaneous neuritogenesis are associated with enhanced expression of ganglioside GM1 in the nuclear membrane. J. Neurosci. 15:3739-3746.Google Scholar
  84. 84.
    Wu, G., Lu, Z.-H., Xie, X., and Ledeen, R. W. 2001. Comparison of ganglioside profiles in nuclear and whole cells of NG108-15 and NG-CR72 lines: Changes in response to different neuritogenic stimuli. Devl. Brain Res.:183-190.Google Scholar
  85. 85.
    Saito, M. and Sugiyama, K. 2002. Characterization of nuclear ganglisides in rat brain: Concentration, composition and developmental changes. Arch. Biochem. Biophys.:153-158.Google Scholar
  86. 86.
    Kozireski-Chubak, D. F., Wu, G., and Ledeen, R. W. 1999. Developmental appearance of nuclear GM1 in neurons of the central and peripheral nervous systems. Devl. Brain Res. 115:201-208.Google Scholar
  87. 87.
    Kozireski-Chubak, D. F., Wu, G., and Ledeen, R. W. 1999. Axonogenesis in Neuro-2a cells correlates with GM1 upregulation in the nuclear and plasma membranes. J. Neurosci. Res. 57:541-550.Google Scholar
  88. 88.
    Holliday, J., Adams, R. J., Sejnowski, T. J., and Spitzer, N. C. 1991. Calcium-induced release of calcium regulates differentiation of cultured spinal neurons. Neuron. 7:787-796.Google Scholar
  89. 89.
    Kocsis, J. D., Rand, M. N., Lankford, K. L., and Waxman, S. G. 1994. Intracellular calcium mobilization and neurite outgrowth in mammalian neurons. J. Neurobiol. 25:252-264.Google Scholar
  90. 90.
    Wu, G., Lu, Z.-H., and Ledeen, R. W. 1995. GM1 ganglioside in the nuclear membrane modulates nuclear calcium homeostasis during neurite outgrowth. J. Neurochem. 64:1419-1422.Google Scholar
  91. 91.
    Ledeen, R. W., Wu, G., Lu, Z.-H., Kozireski-Chubak, D. F., and Fang, Y. 1998. The role of GM1 and other gangliosides in neuronal differentiation. Overview and new findings. Ann. N Y Acad. Sci. 845:161-175.Google Scholar
  92. 92.
    Mutoh, T., Tokuda, A., Miyadai, T., Hamaguchi, M., and Fujiki, N. 1995. Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc. Natl. Acad. Sci. U.S.A. 92:5087-5091.Google Scholar
  93. 93.
    Misasi, R., Sorice, M., Garofalo, T., Griggi, T., Campana, W. M., Giammatteo, M., Pavan, A., Hiraiwa, M., Pontieri, G. M., and O'Brien, J. S. 1998. Colocalization and complex formation between prosaposin and monosialoganglioside GM3 in neural cells. J. Neurochem. 71:2313-2321.Google Scholar
  94. 94.
    Bootman, M. D., Thomas, D., Tovey, S. C., Berridge, M. J., and Lipp, P. 2000. Nuclear calcium signaling. Cell. Mol. Life Sci. 57:371-378.Google Scholar
  95. 95.
    Al-Mohanna, F. A., Caddy, K. W. T., and Bolsover, S. R. 1994. The nucleus is insulated from large cytosolic calcium ion changes. Nature 367:745-750.Google Scholar
  96. 96.
    Hardingham, G. E., Chawla, S., Johnson, C. M., and Bading, H. 1997. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260-265.Google Scholar
  97. 97.
    Badminton, M. N., Kendall, J. M., Rembold, C. M., and Campbell, A. K. 1998. Current evidence suggests independent regulation of nuclear calcium. Cell Calcium 23:79-86.Google Scholar
  98. 98.
    Goldenring, J. R., Otis, L. C., Yu, R. K., and DeLorenzo, R. J. 1985. Calcium/ganglioside-dependent protein kinase activity in rat brain membrane. J. Neurochem. 44:1229-1234.Google Scholar
  99. 99.
    Higashi, H., Omori, A., and Yamagata, T. 1992. Calmodulin, a ganglioside-binding protein. J. Biol. Chem. 267:9831-9838.Google Scholar
  100. 100.
    Fukunaga, K., Miyamoto, E., and Soderling, T. R. 1990. Regulation of Ca2+/calmodulin-dependent protein kinase II by brain gangliosides. J. Neurochem. 54:102-109.Google Scholar
  101. 101.
    Higashi, H. and Yamagata, T. 1992. Mechanism for ganglioside-mediated modulation of a calmodulin-dependent enzyme. J. Biol. Chem. 267:9839-9843.Google Scholar
  102. 102.
    Ledeen, R. W., Skrivanek, J. A., Tirri, L. J., Margolis, R. K., and Margolis, R. U. 1976. Gangliosides of the neuron: localization and origin. Adv. Exp. Med. Biol. 71:83-104.Google Scholar
  103. 103.
    Kreutter, D., Kim, J. Y. H., Goldenring, J. R., Rasmussen, H., Ukomadu, C., DeLorenzo, R. J., and Yu, R. K. 1987. Regulation of protein kinase C activity by gangliosides. J. Biol. Chem. 262:1633-1637.Google Scholar
  104. 104.
    Kim, J. Y., Goldenring, J. R., DeLorenzo, R. J., and Yu, R. K. 1986. Gangliosides inhibit phospholipid-sensitive Ca2+-dependent kinase phosphorylation of rat myelin basic proteins. J. Neurosci. Res. 15:159-166.Google Scholar
  105. 105.
    Chan, K. F. 1989. Ganglioside-modulated protein phosphorylation in muscle. Activation of phosphorylase b kinase by gangliosides. J. Biol. Chem. 264:18632-18637.Google Scholar
  106. 106.
    Tsuji, S., Nakajima, J., Sasaki, T., and Nagai, Y. 1985. Bioactive gangliosides, IV. ganglioside GQ1b/Ca2+ dependent protein kinase activity exists in the plasma membrane fraction of neuroblastoma cell line, GOTO. J. Biochem. 97:969-972.Google Scholar
  107. 107.
    Tsuji, S., Arita, M., and Nagai, Y. 1983. GQ1b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblatoma cell lines. J. Biochem. 94:303-306.Google Scholar
  108. 108.
    Yu, R. K. and Saito, M. 1989. Structure and localization of gangliosides. Pages 1-42, in Margolis, R. U. and Margolis, R. K. (eds.), Neurobiology of Glycoconjugates, Plenum Publishing Corp., New York.Google Scholar
  109. 109.
    Kawai, H., Allende, M. L., Wada, R., Kono, M., Sango, K., Deng, C., Miyakawa, T., Crawley, J. N., Werth, N., Bierfreund, U., Sandhoff, K., and Proia, R. L. 2000. Mice Expressing only Monosialoganglioside GM3 Exhibit Lethal Audiogenic Seizures. J. Biol. Chem. 26:6.Google Scholar
  110. 110.
    Hakomori, S. I. 2000. Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj. J. 17:143-151.Google Scholar
  111. 111.
    Kasahara, K., Watanabe, K., Takeuchi, K., Kaneko, H., Oohira, A., Yamamoto, T., and Sanai, Y. 2000. Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts. J. Biol. Chem. 275:34701-34709.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Robert W. Ledeen
    • 1
  • Gusheng Wu
    • 1
  1. 1.Dept. of NeurosciencesNew Jersey Medical School, UMDNJNewark

Personalised recommendations