Skip to main content
Log in

Dielectric Spectroscopy of Cesium Fluoride in Methanol

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Dielectric relaxation spectra have been measured at frequencies up to 20 GHz for CsF solutions in methanol (MeOH) at concentrations up to about 1 mol-L at 25°C. Spectra were also obtained for a few concentrations of the much less soluble KF. The data show that CsF forms a solvent shared ion pair (SSIP) in MeOH solutions. Detailed consideration of the possible geometries and comparison with earlier conductometric data suggest that the ion pair involves an oriented solvent molecule located at a vertex of one of the coordination sites of the cesium, rather than a conventional SSIP. Solvation numbers of the ions, estimated via the modified Cavell equation, are unrealistically large. This suggests, consistent with the large dielectric decrement and the conductivity data, that the ions significantly break down the chain structure of MeOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Pergamon, Oxford, 1984).

    Google Scholar 

  2. G. T. Hefter, Pure Appl. Chem. 63, 1749(1991).

    Google Scholar 

  3. G. T. Hefter and M. Salomon, J. Solution Chem. 25, 541(1996).

    Google Scholar 

  4. G. T. Hefter, Rev. Inorg. Chem. 10, 185(1989).

    Google Scholar 

  5. C. F. J. Böttcher, Theory of Electric Polarization, Vol. 1, 2nd edn. (Elsevier, Amsterdam, 1973)

    Google Scholar 

  6. C. F. J. Böttcher and P. Bordewijk, Theory of Electric Polarization, Vol. 2, 2nd edn. (Elsevier, Amsterdam, 1978).

    Google Scholar 

  7. B. K. P. Scaife, Principles of Dielectrics (Clarendon, Oxford, 1989).

    Google Scholar 

  8. R. Buchner and J. Barthel, Annu. Rept. Progr. Chem. Sect. C 97, 349(2001).

    Google Scholar 

  9. J. Barthel, R. Buchner, P.-N. Eberspächer, M. Münsterer, J. Stauber, and B. Wurm, J. Mol. Liquids 78, 82(1998).

    Google Scholar 

  10. J. Barthel, R. Buchner, K. Bachhuber, H. Hetzenauer, M. Kleebauer, and H. Ortmeier, Pure Appl. Chem. 62, 2237(1990).

    Google Scholar 

  11. J. Barthel and R. Buchner, Pure Appl. Chem. 63, 1473(1991).

    Google Scholar 

  12. R. Buchner, G. T. Hefter, and J. Barthel, J. Chem. Soc. Faraday Trans. 90, 2475(1994).

    Google Scholar 

  13. R. Buchner, G. T. Hefter, and P. M. May, J. Phys. Chem. A 103, 1(1999).

    Google Scholar 

  14. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 76th edn. (CRC Press, Boca Raton, FL, 1995).

    Google Scholar 

  15. J. Barthel and R. Neueder, Electrolyte Data Collection, Part 1: Conductivities, Transference Numbers, Limiting Ionic Conductivities, G. Kreysa, ed., Chem. Data Ser., Vol. XII (DECHEMA, Frankfurt, 1992).

    Google Scholar 

  16. H. Mandal, D. G. Frood, M. Habibullah, L. Humeniuk, and S. Walker, J. Chem. Soc. Faraday Trans. 1 85, 3045(1989).

    Google Scholar 

  17. R. Buchner and J. Barthel, J. Mol. Liquids 52, 131(1992).

    Google Scholar 

  18. S. Schwerdtfeger, F. Köhler, R. Pottel, and U. Kaatze, J. Chem. Phys. 115, 4186(2001).

    Google Scholar 

  19. H. Pickl, Ph.D. Thesis, Regensburg, 1998.

  20. E. A. S. Cavell, P. C. Knight, and M. A. Sheikh, J. Chem. Soc. Faraday Trans. 67, 2225(1971).

    Google Scholar 

  21. J. Barthel, H. Hetzenauer, and R. Buchner, Ber. Bunsenges. Phys. Chem. 96, 1424(1992).

    Google Scholar 

  22. J. B. Hubbard and L. Onsager, J. Chem. Phys. 67, 4850(1977)

    Google Scholar 

  23. J. B. Hubbard, J. Chem. Phys. 68, 1649(1978).

    Google Scholar 

  24. J. A. Draves, Z. Luthey-Schulten, W. L. Liu, and J. M. Lisy, J. Chem. Phys. 93, 4589(1990).

    Google Scholar 

  25. T. J. Selegue, N. Moe, J. A. Draves, and J. M. Lisy, J. Chem. Phys. 96, 7268(1992).

    Google Scholar 

  26. Y. Marcus, Ion Solvation (Wiley, Chichester, 1985).

    Google Scholar 

  27. G. Oster and J. G. Kirkwood, J. Chem. Phys. 11, 175(1943).

    Google Scholar 

  28. R. Buchner, S. G. Capewell, G. T. Hefter, and P. M. May, J. Phys. Chem. B 103, 1185(1999).

    Google Scholar 

  29. N. C. Pyper, C. G. Pike, and P. P. Edwards, Mol. Phys. 76, 353(1992).

    Google Scholar 

  30. J. Barthel, H. Krienke, and W. Kunz, Physical Chemistry of Electrolyte Solutions (Springer, New York, 1998).

    Google Scholar 

  31. E. U. Franck and R. Deul, Faraday Discuss. Chem. Soc. 102, 543(1980).

    Google Scholar 

  32. J. Barthel, R. Neueder, F. Feuerlein, F. Strasser, and L. Iberl, J. Solution Chem. 12, 449(1983).

    Google Scholar 

  33. Dote, J. L., Kivelson, D., and Schwartz, R. N. J. Phys. Chem. 85, 2169(1981).

    Google Scholar 

  34. R. Buchner and J. Barthel, J. Mol. Liquids 63, 55(1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Buchner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchner, R., Hefter, G. Dielectric Spectroscopy of Cesium Fluoride in Methanol. Journal of Solution Chemistry 31, 521–535 (2002). https://doi.org/10.1023/A:1020217511766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020217511766

Navigation