Abstract
Many years ago we found a bimodal distribution of a number of different behaviors in our regular outbred Wistar stock. This was observed in the response to novelty, the response in a resident-intruder test as well as in the stereotypy response to the dopamine agonist apomorphine. On the basis of that, we decided to selectively breed these animals, which resulted in the the APO-SUS and APO-UNSUS lines. The APO-SUS rats show a strong, stereotyped gnawing response, whereas APO-UNSUS show only a weak gnawing response. Follow-up studies have shown that the phenotypical expression of these rats depend on genetic and early and late environmental factors. Because these rats were not selected on the basis of a specific behavioral trait, but rather on the basis of a difference in susceptibility for a specific neurotransmitter, it is not surprising that these animals show major differences in the neurochemical state of the central nervous system. In fact, in many respects they represent mirror images of each other. Moreover, these animals show clear differences in their endocrine and immunological systems. APO-SUS rats can be characterized as having a hyper-reactive hypothalamus-pituitary-adrenal axis, and a dominance of the TH2 system. Apart from discussing the main differences between APO-SUS and APO-UNSUS rats, the review specifically focuses on the former as a potential model for schizophrenia. We have been able to show that APO-SUS rats indeed share a large number of behavioral, neurochemical, endocrinological, and immunological similarities with patients suffering from schizophrenia. Because schizophrenia is also likely to result from an interaction between genetic and early stressful life events, the APO-SUS rat might represent a promising animal model for studying this severe mental disorder.
This is a preview of subscription content, access via your institution.
REFERENCES
Baruch, I., Hemsley, D. R., and Gray, J. A. (1988). Differential performance of acute and chronic schizophrenics in a latent inhibition task. J. Nerv. Ment. Dis. 176:598–606.
Benus, R. F., Bohus, B., Koolhaas, J. M., and van Oortmerssen, G. A. (1991). Behavioural differences between artificially selected aggressive and non-aggressive mice: Response to apomorphine. Behav. Brain Res. 43:203–208.
Bolhuis, J. E., Schouten, W. G. P., de Jong, I. C., Schrama, J. W., Cools, A. R., and Wiegant, V. M. (2000). Response to apomorphine of pigs with different coping characteristics. Psychopharmacology 152:24–30.
Braff, D., Stone, C., Callaway, E., Geyer, M. A., Glick, I. D., and Bali, L. (1978). Prestimulus effects of human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343.
Breivik, T., Sluyter, F., Hof, M., and Cools, A. R. (2000). Differential susceptibility to periodontitis in genetically selected Wistar rat lines that differ in their behavioral and endocrinological response to stressors. Behav. Genet. 30:123 –130.
Breivik, T., Thrane, P. S., Murison, R., and Gjermo, P. (1996). Emotional stress eff3ects on immunity, gingivitis and periodontitis. Eur. J. Oral Sci. 104:327–334.
Cabib, S., Oliverio, A., Ventura, R., Luchesse, F., and Puglisi Allegra, S. (1997). Brain dopamine receptor plasticity: Testing a diathesis-stress hypothesis in an animal model. Psychopharmacology 132:153–160.
Chiu, P., Rajakumar, G., Chiu, S., Kwan, C. Y., and Mishra, R. K. (1984). Differential changes in central serotonin and dopamine receptors in spontaneous hypertensive rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 8:665–668.
Connell, P. (1958). Amphetamine Psychosis. Oxford University Press, London.
Cools, A. R., Brachten, R., Heeren, D., Willemen, A., and Ellenbroek B. (1990). Search after neurobiological profile of individualspecific features of Wistar rats. Brain Res. Bull. 24:49–69.
Cools, A. R., Dierx, J., Coenders, C., Heeren, D., Ried, S., Jenks, B. G., and Ellenbroek, B. (1993a). Apomorphine-susceptible and apomorphine-unsusceptible Wistar rats differ in novelty-induced changes in hippocampal dynorphin B expression and two-way active avoidance: A new key in the search for the role of the hippocampalaccumbens axis. Behav. Brain Res. 55:213–221.
Cools, A. R., and Ellenbroek, B. A. (2002). Animal models of personality. In D'Haenen, H., den Boer, J. A., Westenberg, H., and Willner P. (eds.), Textbook of Biological Psychiatry, John Wiley & Sons, Chichester, pp. 1333–1344.
Cools, A. R., Ellenbroek, B. A., Gingras, M. A., Engbersen, A., and Heeren, D. (1997). Differences in vulnerability and susceptibility to dexamphetamine in Nijmegen high and low responders to novelty: A dose-effect analysis of spatio-temporal programming of behaviour. Psychopharmacology Berl. 132:181–187.
Cools, A. R., and Gingras, M. A. (1998). Nijmegen high and low responders to novelty: A new tool in the search after the neurobiology of drug abuse liability. Pharmacol. Biochem. Behav. 60:151–159.
Cools, A. R., Rots, N. Y., Ellenbroek, B., and de Kloet, E. (1993b). Bimodal shape of individual variation in behavior of Wistar rats: The overall outcome of a fundamentally different make-up and reactivity of the brain, the endocrinological and the immunological system. Neuropsychobiology 28:100–105.
Costall, B., and Naylor, R. (1973). The role of telencephalic dopaminergic systems in the mediation of apomorphine stereotyped behavior. Eur. J. Pharmacol. 24:8–24.
Crusio, W. E., Schwegler, H., and van Abeelen, J. H. F. (1989). Behavioral responses to novelty and structural variation of the hippocampus in mice. I. Quantitative-genetic analysis of behaviour in the open field. Behav. Brain Res. 32:75–80.
Daynes, R. A., Araneo, B. A., Dowell, T. A., Huaang, K., and Dudley, D. (1990). Regulation of murine lymphokine production in vivo. III. The lymphoid tissue microenvironment exerts regulatory influences over T helper cell function. J. Exp. Med. 171:979–996.
de Bruin, N. M. W. J., van Luijtelaar, E. L. J. M., Cools, A. R., and Ellenbroek B. A. (2001). Dopamine characteristics in rat genotypes with distinct susceptibility to epileptic activity: Apomorphine-induced stereotyped gnawing and novelty/amphetamineinduced locomotor stimulation. Behav. Pharmacol. 12:517–525.
Deleplanque B., Neveu, P. J., Vitiello, S., and LeMoal, M. (1992). Early effects of unilateral lesions of substantia nigra on immune Reactivity. Neurosci. Lett. 135:205–209.
Driscoll, P., Escorihuela, R. M., Fernandez-Teruel, A., Giorgi, O., Schwegler, H., Steimer, T., Wiersma, A., Corda, M. G., Flint, J., Koolhaas, J. M., Langhans, W., Schulz, P. E., Siegel, J., and Tobena, A. (1998). Genetic selection and differential stress responses: The Roman Lines/strains of rats. Ann. N.Y. Acad. Sci. 851:501–510.
Driscoll, P., Lieblich, I., and Cohen, E. (1986). Amphetamineinduced stereotypic responses in Roman high-and Roman lowavoidance rats. Pharmacol. Biochem. Behav. 24:1329–1332.
Ellenbroek, B. A., and Cools, A. R. (1993). Stereotyped behaviour. In van Haaren, F. C. (ed.), Methods in Behavioral Pharmacology, Elsevier, Amsterdan, pp. 519–538.
Ellenbroek, B. A., and Cools, A. R. (2000). Animal models for the negative symptoms of schizophrenia. Behav. Pharmacol. 11: 223–233.
Ellenbroek, B. A., and Cools, A. R. (2002). Animal models for schizophrenia, In D'Haenen, H., den Boer, J. A., Westenberg, H., and Willner P. (eds.), Textbook of Biological Psychiatry, John Wiley & Sons, Chichester, pp. 567–580.
Ellenbroek, B. A., Geyer, M. A., and Cools, A. R. (1995). The behavior of APO-SUS rats in animal models with construct validity for schizophrenia. J. Neurosci. 15:7604–7611.
Ellenbroek, B. A., Sluyter, F., and Cools, A. R. (2000). The role of genetic and early environmental factors in determining apomorphine susceptibility. Psychopharmacology 148:124–131.
Essman, W. D., McGonigle, P., and Lucki, I. (1992). Variations in the behavioural responses produced by apomorphine in different strains of rats. Soc. Neurosci. Abstr. 18:877.
Feldman, S., and Conforti, N. (1980). Participation of the dorsal hippocampus in the glucocorticoid feedback effect on adrenocortical activity. Neuroendocrinology 30:52–55.
Geyer, M. A., Krebs-Thomson, K., Braff, D. L., and Swerdlow, N. R. (2001). Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenic patients: A decade in review. Psychopharmacology 156:117–154.
Gingras, M. A., and Cools, A. R. (1996). Analysis of the biphasic locomotor response to ethanol in high and low responders to novelty: A study in Nijmegen Wistar rats. Psychopharmacology 125:258–264.
Harnack, E. (1874). Ñber die Wirkungen des Apomorphins am Saugetier und am Frosch. Arch. Exp. Pathol. Pharmacol. 2:254–306.
Helmeste, D. M. (1983). Spontaneous and apomorphine-induced locomotor changes parallel dopamine receptor differences in two rats strains. Pharmacol. Biochem. Behav. 19:153–155.
Herman, J. P., Schafer, K. H., Young, E. A., Thompson, R., Douglass, J., Akil, H., and Watson, S. J. (1989). Evidence for a hippocampal regulation of neuroendocrine neurons of the hypothalamopituitary-adrenocortical axis. J. Neurosci. 9:3072–3082.
Hooks, M. S., Jones, G. H., Neill, D. B., and Justice, J. B. J. (1991). Individual differences in amphetamine sensitization: Dosedependent effects. Pharmacol. Biochem. Behav. 41:203–210.
Kavelaars, A., Heijnen, C. J., Ellenbroek, B., van Loveren, H., and Cools, A. (1997). Apomorphine-susceptible and apomorphineunsusceptible Wistar rats differ in their susceptibility to inflammatory and infectious diseases: A study on rats with group-specific differences in structure and reactivity of hypothalamic-pituitary-adrenal axis. J. Neurosci. 17:2580–2584.
Kelley, K. W., and Dantzer, R. (1991). Growth hormone and prolactin as natural antagonists of glucocorticoids in immuneregulation. In Plotnikoff, N., Murgo, A., Faith, R., and Wybran, J. (eds.), Stress and Immunity,CRC Press, Boca Raton, pp. 433–452.
Kinney, G. G., Wilkinson, L. O., Saywell, K. L., and Tricklebank, M. D. (1999). Rat strain differences in the ability to disrupt sensorimotor gating are limited to the dopaminergic system, specific to prepulse inhibition, and unrelated to changes in startle amplitude or nucleus accumbens dopamine receptor sensitivity. J. Neurosci. 19:5644–5653.
Krauchi, K., Wirz-Justice, A., Willener, R., Campbell, I. C., and Feer, H. (1983). Spontaneous hypertensive rats: Behavioral and corticosterone response depend on circadian phase. Physiol. Behav. 30:35–40.
Lammers, C.-H., Garcia-Borreguero, D., Schmider, J., Gotthardt, U., Dettling, M., Holsboer, F., and Heuser, I. J. E. (1995). Combined dexamethasone/corticotropin-releasing hormone test in patients with schizophrenia and in normal controls II. Biol. Psychiatry 38:803–807.
Laruelle, M. (2000). The role of endogenous sensitization in the pathophysiology of schizophrenia: Implications from recent brain imaging studies. Brain Res. Rev. 31:371–384.
Lieberman, J. A., Kane, J. M., and Alvir, J. (1987). Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 91:415–533.
Liebsch, G., Montkowski, A., Holsboer, F., and Landgraf, R. (1998). Behavioural profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour. Behav. Brain Res. 94:301–310.
Ljungberg, T., and Ungerstedt, U. (1978). A new method for simultaneous registration of 8 behavioral parameters related to monoamine neurotransmission. Pharmacol. Biochem. Behav. 8:483–489.
Mortensen, P. B. (1994). The occurrence of cancer in first admitted schizophrenic patients. Schizophr. Res. 12:185–194.
Moynihan, J. A., Karp, J. D., Cohen, N., and Crocke, R. (1994). Alterations in IL-4 and antibody production following pheromone exposure: Role of glucocorticoids. J. Neuroimmunol. 54:51–58.
Mulders, W. H., Meek, J., Schmidt, E. D., Hafmans, T. G., and Cools, A. R. (1995). The hypothalamic paraventricular nucleus in two types of Wistar rats with different stress responses. II. Differential Fos-expression. Brain Res. 689:61–70.
Muller, N., Riedel, M., Ackenheil, M., and Schwarz, M. J. (1999). The role of immune function in schizophrenia: An overview. Eur. Arch. Psychiatry Clin. Neurosci. 249(Suppl. 4):62–68.
Muller, S. F., Modell, S., Ackenheil, M., Brachner, A., and Kurtz, G. (1998). Elevated response of growth hormone to graded doses of apomorphine in schizophrenic patients. J. Psychiatr. Res. 32:265–271.
Munck, A., and Guyre, P. M. (1990). Glucocorticoids and the immune system. In Ader, R., Felten, D. L., and Cohen, N. (eds.), Psychoneuroimmunology,Elsevier, Amsterdam, pp. 447–474.
Nusslein, H. G., Weber, G., and Kalden, J. R. (1994). Synthetic glucocorticoids potentiate IgE synthesis: Influence of steroid and non-steroid hormones on human in vitro IgE secretion. Allergy 49:370.
Papp, M., Willner, P., and Muscat, R. (1991). An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology 104:255–259.
Petitto, J. M., McCarthy, D. B., Rinker, C. M., Huang, Z., and Getty, T. (1997). Modulation of behavioral and neurochemical measures of forebrain dopamine function in mice by speciesspecific interleukin-2. J. Neuroimmunol. 73:183–190.
Piazza, P. V., Deminiere, J. M., Maccari, S., Mormede, P., LeMoal, M., and Simon, H. (1990). Individual reactivity to novelty predicts probability of amphetamine self-administration. Behav. Pharmacol. 1:339–345.
Randrup, A., and Munkvad, I. (1966). Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacology 11:300–310.
Ricci, A., Mariotta, S., Greco, S., and Bisetti, A. (1997). Expression of dopamine receptors in immune organs and circulating immune cells. Clin. Exp. Hypertens. 19:59–71.
Rigdon, G. C. (1990). Differential effects of apomorphine on prepulse inhibition of acoustic startle reflex in two rat strains. Psychopharmacology 102:419–421.
Riksen, N. P., Ellenbroek, B. A., Cools, A. R., Siero, H. L., Rongen, G. A., Smits, B. W., Russel, F. G. M., and Smits, P. (2002). Stress susceptibility as a determinant of the release of endothelium derived relaxing and contracting factors in rat mesenteric arteries. J. Cardiovasc. Pharmacol. in press.
Rots, N. Y., Cools, A. R., Berod, A., Voorn, P., Rostene, W., and de Kloet, E. (1996a). Rats bred for enhanced apomorphine sus-ceptibility have elevated tyrosine hydroxylase mRNA and dopamine D2-receptor binding sites in nigrostriatal and tuberoinfundibular dopamine systems. Brain Res. 710:189–196.
Rots, N. Y., Cools, A. R., De Jong, J., and de Kloet, E. (1995). Corticosteroid feedback resistance in rats genetically selected for increased dopamine responsiveness [published erratum appears in J. Neuroendocrinol. (1995) 7:280]. J. Neuroendocrinol. 7: 153–161.
Rots, N. Y., Cools, A. R., Oitzl, M. S., De Jong, J., Sutanto, W., and de Kloet, E. (1996b). Divergent prolactin and pituitary-adrenal activity in rats selectively bred for different dopamine responsiveness. Endocrinology 137:1678–1686.
Rots, N. Y., Workel, J., Oitzl, M. S., Berod, A., Rostene, W., Cools, A. R., and de Kloet, E. R. (1996c). Development of divergence in dopamine responsiveness in genetically selected rat lines is preceded by changes in pituitary-adrenal activity. Dev. Brain Res. 92:164–171.
Saigusa, T., Tuinstra, T., Koshikawa, N., and Cools, A. R. (1999). High and low responders to novelty: Effects of a catecholamine synthesis inhibitor on novelty-induced changes in behaviour and release of accumbal dopamine. Neuroscience 88:1153–1163.
Sapolsky, R. M., Zola-Morgan, S., and Squire, L. R. (1991). Inhibition of glucocorticoid secretion by the hippocampal formation in the primate. J. Neurosci. 11:3695–3704.
Schopke, R., Wolter, D. P., Lipp, H. P., and Leisinger-Trigona, M. C. (1991). Swimming navigation and structural variations on the infrapyramidal mossy fibers in the hippocampus of the mouse. Hippocampus 1:315–328.
Schouten, W. G. P., and Wiegant, V. M. (1997). Individual responses to acute and chronic stress in pigs. Acta Physiol. Scand. 161(Suppl 640):88–91.
Schwegler, H., and Lipp, H. P. (1983). Hereditary covariations of neuronal circuitry and behavior: Correlations between the proportions of hippocampal synaptic terminal fields in the regio inferior and two-way active avoidance in mice and rats. Behav. Brain Res. 7:1–38.
Smits, B. W., Siero, H. L., Ellenbroek, B. A., Riksen, N. P., Cools, A. R., Rongen, G. A., Russel, F. G. M., and Smits, P. (2002). Stress susceptibility as a determinant of the response to adrenergic stimuli in mesenteric resistance arteries of the rat. J. Cardiovasc. Pharmacol. in press.
Spooren, W. P. J. M., Lubbers, L., Jenks, B. G., and Cools, A. R. (1999). Variation in hippocampal dynorphin B-immunoreactive mossy fiber terminal fields of apomporphine-(un)-susceptible rats. J. Chem. Neuroanat. 17:59–64.
Swerdlow, N. R., Martinez, Z. A., Hanlon, F. M., Platten, A., Farid, M., Auerbach, P., Braff, D. L., and Geyer, M. A. (2000). Toward understanding the biology of a complex phenotype: Rat strain and substrain differences in the sensorimotor gatingdisruptive effects of dopamine agonists. J. Neurosci. 20:4325–4336.
Tang, A. H., and Himes, C. S. (1995). Apomorphine produced more yawning in Sprague-Dawley rats than in F344 rats: A pharmacological study. Eur. J. Pharmacol. 284:13–18.
Teunis, M. A. T., Kavelaars, A., Voest, E., Bakker, J. M., Ellenbroek, B. A., Cools, A. R., and Heijnen, C. J. (2002). Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic dopaminergic system. FASEB J (in press).
Tuinstra, T., Verheij, M., Willemen, A., Iking, J., Heeren, D. J., and Cools, A. R. (2000). Retrieval of spatial information in Nijmegen high and low responders: Involvement of beta-adrenergic mechanisms in the nucleus accumbens. Behav. Neurosci. 114:1088–1095.
van Abeelen, J. H. F. (1989). Genetic control of hippocampal cholinergic and dynorphinergic mechanisms regulating noveltyinduced exploratory behavior in house mice. Experientia 45:839–845.
van de Langerijt, A. G., van Lent, P. L., Hermus, A. R., Sweep, C. G., Cools, A. R., and van den Berg, W. B. (1994). Susceptibility to adjuvant arthritis: Relative importance of adrenal activity and bacterial flora. Clin. Exp. Immunol. 97:33–38.
van den Buuse, M., and de Jong, W. (1989). Differential effects of dopaminergic drugs in open-field behavior of spontaneously hypertensive rats and normotensive Wistar-Kyoto rats. J. Pharmacol. Exp. Ther. 248:1189–1196.
van Oortmerssen, G. A., and Bakker, T. C. M. (1981). Artificial selection for short and long attack latencies in wild Mus domesticus. Behav. Genet. 11:115–126.
Vaughan, C. E., van den Buuse, M., and Roland, B. L. (2000). Brain dopamine D2 receptor mRNA levels are elevated in young spontaneously hypertensive rats. Neurosci. Res. 34: 199–205.
Verbeek, M. E. M., Drent, P. J., and Wiepkema, P. R. (1994). Consistent individual differences in early exploratory behaviour of male great tits. Anim. Behav. 48:1113–1121.
Vinogradov, S., Gottesman, I. I., Moises, H. W., and Nichol, S. (1991). Negative association between schizophrenia and rheumatoid arthritis. Schizophr. Bull. 17:669–678.
Walker, C. D., Rivest, R. W., Meaney, M. J., and Aubert, M. L. (1989). Differential activation of the pituitary-adrenocortical axis after stress in the rat: Use of two genetically selected lines (Roman low-and high-avoidance rats) as a model. J. Endocrinol. 123:477–485.
Walker, E. F., and Diforio, D. (1997). Schizophrenia: A neural diathesis-stress model. Psychol. Rev. 104:667–685.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ellenbroek, B.A., Cools, A.R. Apomorphine Susceptibility and Animal Models for Psychopathology: Genes and Environment. Behav Genet 32, 349–361 (2002). https://doi.org/10.1023/A:1020214322065
Issue Date:
DOI: https://doi.org/10.1023/A:1020214322065
- APO-SUS
- APO-UNSUS
- apomorphine
- dopamine
- schizophrenia
- stress
- Wistar