Skip to main content
Log in

Molecular approaches to understanding mycorrhizal symbioses

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Molecular analyses of plant–microbe interactions have become common place in the last two decades. Although there are philosophical considerations about the application of a reductionist approach to some areas of research, the collaborative interface (e.g. molecular ecology) can provide specialised insight to the generalist, whilst adding broader relevance to the research of the specialist. However, the expense of this discipline has tended to restrict research to work on model host–microbe interactions. Molecular techniques were embraced early on by a few pioneers from the field of mycorrhizal research. Despite some high profile research, the number of molecular mycorrhizal publications has only recently begun to escalate. However the extent of literature now has exceeded the capacity for a comprehensive short review. In this paper we will briefly discuss the use of model species for molecular research and explore the range of questions that are being addressed using molecular techniques, whilst minimising use of specific jargon, to maximise the usefulness of this review to a non specialist audience. Our primary focus is on arbuscular mycorrhizal symbiosis, to complement the papers by Tagu et al., Podila et al. and Chalot et al. (all this volume), who have addressed aspects of research on ectomycorrhizal symbioses. Here we include specific citations from research groups around the world, along with reference to more detailed reviews, to provide a taste of the current excitement in this fundamental and rapidly evolving research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balestrini R, Perotto S, Gasverde E, Dahiya P, Guldmann L L, Brewin N J and Bonfante P 1999 Transcription of a gene encoding a lectin-like glycoprotein is induced in root cells harboring arbuscular mycorrhizal fungi in Pisum sativum. Mol. Plant Microbe Interact. 12, 785-791.

    Google Scholar 

  • Barker S J and Tagu D 2000 The roles of auxins and cytokinins in mycorrhizal symbioses. J. Plant Growth Reg. 19, 144-154.

    Google Scholar 

  • Barker S J, Stummer B, Gao L, Dispain I, O'Connor P J, and Smith S E 1998a A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation. Plant J. 15, 791-797.

    Google Scholar 

  • Barker S J, Tagu D and Delp G 1998b Regulation of root and fungal morphogenesis in mycorrhizal symbioses. Plant Physiol. 116, 1201-1207.

    Google Scholar 

  • Baron C and Zambryski P C 1995 The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu. Rev. Genet. 29, 107-129.

    Google Scholar 

  • Benabdellah K, Azcón-Aguilar C and Ferrol N 2000 Alterations in the plasma membrane polypeptide pattern of tomato roots (Lycopersicon esculentum) during the development of arbuscular mycorrhiza. J. Exp. Bot. 51, 747-754.

    Google Scholar 

  • Bianciotto V and Bonfante P 1992 Quantification of the nuclear DNA content of two arbuscular mycorrhizal fungi. Mycol. Res. 96, 1071-1076.

    Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy H V and Bonfante P 1996 An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl. Env. Microbiol. 62, 3005-3010.

    Google Scholar 

  • Bird, D M and Wilson M A 1994 DNA sequence and expression analysis of root-knot nematode elicited giant cell transcripts. Mol. Plant Microbe Interact. 7, 419-424.

    Google Scholar 

  • Blilou I, Ocampo J A and Garcia-Garrido J M 2000 induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J. Exp. Bot. 51, 1969-1977.

    Google Scholar 

  • Bonfante P and Perotto S 1995 Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol. 130, 3-21.

    Google Scholar 

  • Bothe H, Klingner A, Kaldorf M, Schmitz O, Esch H, Hundeshagen B and Kernebeck H 1994 Biochemical approaches to the study of plant-fungal interactions in arbuscular mycorrhiza. Experientia 50, 919-925.

    Google Scholar 

  • Burleigh S 2000 Cloning arbuscule-related genes from mycorrhizas. Plant Soil 226, 287-292.

    Google Scholar 

  • Burleigh S H 2001 Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas. Plant Sci. 160, 899-904.

    Google Scholar 

  • Buscot F, Munch J C, Charcosset J Y, Gardes M, Nehls U and Hampp R 2000 Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiol. Rev. 24, 601-614.

    Google Scholar 

  • Cairney J W G 1999 Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9, 125-135.

    Google Scholar 

  • Cavagnaro T R, Gao L-L, Smith F A and Smith S E 2001 Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol. 151, 469-475.

    Google Scholar 

  • Colebatch G, Trevaskis B and Udvardi M 2001 Functional genomics: tools of the trade. New Phytol. 153: 27-36.

    Google Scholar 

  • Cronk Q C B 2001 Plant evolution and development in a postgenomic context. Nat. Rev. Gen. 2, 607-619.

    Google Scholar 

  • Delp G, Rosewarne G and Barker S J 1998 The molecular route to understanding VAM symbiosis. In Mycorrhizae: A Modern Laboratory Manual. Ed. A Varma. pp 327-352. Springer, Berlin.

    Google Scholar 

  • Delp G, Smith S E and Barker S J 2000 Isolation by differential display of three cDNAs coding for proteins from the VA mycorrhizal fungus G. intraradices, Mycol. Res. 104, 293-300.

    Google Scholar 

  • Dodd J C, Boddington C L, Rodriguez A, Gonzalez-Chavez C and Mansur I 2000 Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant Soil 226, 131-151.

    Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V and Gianinazzi S 1989 First report of non-mycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci. 60, 215-222.

    Google Scholar 

  • Dumas-Gaudot E, Guillaume P, Tahiri-Alaoui A, Gianinazzi-Pearson V and Ganinazzi S 1994 Changes in polypeptide patterns in tobacco roots colonized by 2 Glomus species. Mycorrhiza 4, 215-221.

    Google Scholar 

  • Ferrol N, Barea J M and Azcón-Aguilar C 2000 Molecular approaches to study plasma membrane H+-ATPases in arbuscular mycorrhizas. Plant Soil 226, 219-225.

    Google Scholar 

  • Fitter A H and Moyersoen B 1996 Evolutionary trends in rootmicrobe symbioses. Phil. Trans. R. Soc. London B 351, 1367-1375.

    Google Scholar 

  • Forbes P J, Millam S, Hooker J E and Harrier L A 1998 Transformation of the arbuscular mycorrhiza Gigaspora rosea by particle bombardment. Mycol. Res. 102, 497-501.

    Google Scholar 

  • Franken P, Lapopin L, Meyer-Gauen G and Gianinazzi-Pearson V 1997 RNA accumulation and genes expressed in spores of the arbuscular mycorrhizal fungus, Gigaspora rosea. Mycologia 89, 293-297.

    Google Scholar 

  • Frühling M, Roussel H, Gianinazzi-Pearson V, Puhler A and Perlick A M 1997 The Vicia faba leghemoglobin gene VFLB29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum. Mol. Plant Microbe Interact. 10, 124-131.

    Google Scholar 

  • Gao L-L, Delp G and Smith S E 2001 Colonization patterns in a mycorrhizal-defective mutant tomato vary with different arbuscular-mycorrhizal fungi. New Phytol. 151; 477-491.

    Google Scholar 

  • Gianinazzi-Pearson V 1996 Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8, 1871-1883.

    Google Scholar 

  • Gianiniazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A and Gianinazzi S 1996. Cellular and molecular defence-related 115 responses to invasion by arbuscular mycorrhizal fungi. New Phytol. 133: 45-57.

    Google Scholar 

  • Goldberg R B 1986 Regulation of plant gene expression. Phil. Trans. R. Soc. London B 314, 343-353.

    Google Scholar 

  • Grierson D and Covey S N 1988 Plant Molecular Biology. 2nd Ed. Chapman and Hall, Glasgow, UK Ch 1, pp 1-21.

    Google Scholar 

  • Harrier L A 2001 The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension. J. Exp. Bot. 52, 469-478.

    Google Scholar 

  • Harrison M J 1996 A sugar transporter from Medicago truncatula -altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations. Plant J. 9, 491-503.

    Google Scholar 

  • Harrison M J 1999a Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol.Biol. 50, 361-389.

    Google Scholar 

  • Harrison M J 1999b Biotrophic interfaces and nutrient transport in plant/fungal symbioses. J. Exp. Bot. 50, 1013-1022.

    Google Scholar 

  • Harrison M J and van Buuren M L 1995 A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378, 626-629.

    Google Scholar 

  • Hirsch A M and Kapulnik Y 1998 Signal transduction pathways in mycorrhizal associations: Comparisons with the Rhizobium-legume symbiosis. Fungal Genet. Biol. 23, 205-212.

    Google Scholar 

  • Klironomos J N and Kendrick W B 1993 Research on mycorrhizas - Trends in the past 40 years as expressed in the MYCOLIT database. New Phytol. 125, 595-600.

    Google Scholar 

  • Koltai H, Dhandaydham M, Opperman C, Thomas J and Bird D 2001 Overlapping plant signal transduction pathways induced by a parasitic nematode and a rhizobial endosymbiont. Mol. Plant Micribol. Interact. 14, 1168-1177.

    Google Scholar 

  • Lambais M R and Mehdy M C 1996 Soybean roots infected by Glomus intraradices strains differing in infectivity exhibit differential chitinase and beta-1,3-glucanase expression. New Phytol. 134, 531-538.

    Google Scholar 

  • Lange J, Xie Z-P, Broughton W J, Vogeli-Lange R and Boller T 1999 A gene encoding a receptor-like protein kinase in the roots of common bean is differentially regulated in response to pathogens, symbionts and nodulation factors. Plant Sci. 142, 133-145.

    Google Scholar 

  • Mandoli D F and Olmstead R 2000 The importance of emerging model systems in plant biology. J. Plant Growth Regul. 19, 249-252.

    Google Scholar 

  • Marsh J F and Schultze M 2001 Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytol. 150, 525-532.

    Google Scholar 

  • Martin F 2001 Frontiers in molecular mycorrhizal research - genes, loci, dots and spins. New Phytol. 150, 499-507.

    Google Scholar 

  • Marx J 2000 Interfering with gene expression. Science 288, 1370-1372.

    Google Scholar 

  • McLean C B, Cunnington J H and Lawrie A C 1999 Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridaceae. New Phytol. 144, 351-358.

    Google Scholar 

  • Minerdi D, Fani R, Gallo R, Boarino A and Bonfante P 2001 Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl. Env. Microbiol. 67, 725-732.

    Google Scholar 

  • Murphy P J, Langridge P and Smith S E 1997 Cloning plant genes differentially expressed during colonisation of roots of Hordeum vulgare by the vesicular-arbuscular mycorrhizal fungu Glomus intraradices. New Phytol. 135, 291-301.

    Google Scholar 

  • Peterson R L and Guinel F C 2000 The use of plant mutants to study regulation of colonization by AM fungi. In Arbuscular Mycorrhizas: Physiology and Function. Eds. Y Kapulnik and D D Douds Jr. pp 147-171. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Lalol M, Leggewie G, Amrhein N and Bucher M 2001 A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414, 462-466.

    Google Scholar 

  • Read D J, Duckett J G, Francis R, Ligrone R and Russell A 2000 Symbiotic fungal associations in 'lower' land plants. Phil. Trans. R. Soc. London B 355, 815-831.

    Google Scholar 

  • Redecker D 2000 Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10, 73-80.

    Google Scholar 

  • Redecker D, Kodner R and Graham L E 2000 Glomalean fungi from the Ordovician. Science 289, 1920-1921.

    Google Scholar 

  • Remy W, Taylor TN, Hass H and Kerp H 1994 Four hundredmillion-year-old vesicular arbuscular mycorrhizas. Proc. Natl. Acad. Sci. USA 91, 11841-11843.

    Google Scholar 

  • Rosendahl S and Taylor JW 1997 Development of multiple genetic markers for studies of genetic variation in arbuscular mycorrhizal fungi using AFLP+. Mol. Ecol. 6, 821-829.

    Google Scholar 

  • Rosewarne G M 1998 Molecular characterisation of the vesiculararbuscular mycorrhizal symbiosis in Lycopersicon esculentum Mill. Ph.D. Thesis. The University of Adelaide, South Australia.

    Google Scholar 

  • Rosewarne G, Barker S J and Smith S E 1997 Production of near synchronous fungal colonisation in tomato for developmental and molecular analyses of mycorrhiza. Mycol. Res. 101, 966-970.

    Google Scholar 

  • Rosewarne G M, Barker S J, Smith S E, Smith F A and Schachtman D P 1999 A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. New Phytol. 144, 507-516.

    Google Scholar 

  • Ruiz-Lozano J M, Gianinazzi S and Gianinazzi-Pearson V 1999a Genes involved in resistance to powdery mildew in barley differentially modulate root colonization by the mycorrhizal fungus Glomus mosseae. Mycorrhiza 9, 237-240.

    Google Scholar 

  • Ruiz-Lozano J M, Roussel H, Gianinazzi S and Gianinazzi-Pearson V 1999b Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp in wild-type and symbiosisdefective pea genotypes. Mol. Plant Microbe Interact. 12, 976-984.

    Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vogeli-Lange R, Aeschbacher R A, Lange J, Wiemken A, Kim D, Cook D R and Boller T 2000 Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol. Plant Microb. Interact. 13, 763-777.

    Google Scholar 

  • Sanders I R, Clapp J P and Wiemken A 1996 The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems - a key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol. 133, 123-134.

    Google Scholar 

  • Selosse M A and Le Tacon F 1998 The land flora: a phototrophfungus partnership? Trends Ecol. Evol. 13, 15-20.

    Google Scholar 

  • Sen R, Hietala A M and Zelmer C D 1999 Common anastomosis and internal transcribed spacer RFLP groupings in binucleate Rhizoctonia isolates representing root endophytes of Pinus sylvestris, Ceratorhiza spp. from orchid mycorrhizas and a phytopathogenic anastomosis group. New Phytol. 144, 331-341.

    Google Scholar 

  • Senoo K, Solaiman M Z, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A and Obata H 2000 Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant Lotus japonicus after EMS-treatment. Plant Cell Physiol. 41, 726-732.

    Google Scholar 

  • Shaul O, Galili S, Volpin H, Ginzberg I, Elad Y, Chet I and Kapulnik Y 1999 Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol. Plant Microbe Interact. 12, 1000-1007.

    Google Scholar 

  • Simon L 1996 Phylogeny of the Glomales: deciphering the past to understand the present. New Phytol. 133, 95-101.

    Google Scholar 

  • Smith S E and Gianinazzi-Pearson P 1988 Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 221-244.

    Google Scholar 

  • Smith S E and Read D J 1997 Mycorrhizal Symbiosis. 2nd Edn, Academic Press, London.

    Google Scholar 

  • Stougaard J 2001 Genetics and genomics of root symbiosis. Curr. Opin. Plant Biol. 4, 328-335.

    Google Scholar 

  • Tagu D and Barker S J 1997 At the root of mycorrhizal symbioses. Trends Plant Sci. 2, 2-3.

    Google Scholar 

  • The Angiosperm Phylogeny Group 1998 An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85, 531-553.

    Google Scholar 

  • Tahiri-Alaoui A and Antoniw J F 1996 Cloning of genes associated with the colonization of tomato roots by the arbuscular mycorrhizal fungus Glomus mosseae. Agronomie 16, 699-707.

    Google Scholar 

  • Vallorani L, Bernardini F, Sacconi C, Pierleoni R, Pieretti B, Piccoli G, Buffalini M and Stocchi V 2000 Identification of Tuber borchii Vittad. mycelium proteins separated by two-dimensional polyacrylamide gel electrophoresis using amino acid analysis and sequence tagging. Electrophoresis 21, 3710-3716.

    Google Scholar 

  • van Tuinen D, Jacquot E, Zhao B, Gollotte A and Gianinazzi-Pearson V 1998 Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol. Ecol. 7, 879-887.

    Google Scholar 

  • Vierheilig H, Alt M, Neuhaus J-M, Boller T and Wiemken A 1993 Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol. Plant Microb. Int. 6, 261-264.

    Google Scholar 

  • Voiblet C, Duplessis S, Encelot N and Martin F 2001 Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridisation of arrayed cDNAs. Plant J. 25, 181-191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Barker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, S.J., Larkan, N.J. Molecular approaches to understanding mycorrhizal symbioses. Plant and Soil 244, 107–116 (2002). https://doi.org/10.1023/A:1020211624849

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020211624849

Navigation