Skip to main content
Log in

Cytoskeleton in mycorrhizal symbiosis

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

An understanding of the role played by the cytoskeleton in formation and function of mycorrhizas has been hampered by the technical difficulty of working with mycorrhizal material. Recently, however, improved labelling techniques suitable for both plant and fungal symbionts in combination with either epifluorescence microscopy or laser scanning confocal microscopy have resulted in new information. As well, molecular methods have made it possible to monitor changes of cytoskeletal elements during mycorrhiza development. Currently we know that the cytoskeletal systems of both plant and fungal partners undergo changes during both ecto- and endomycorrhizal symbiosis. However, little information is available concerning the regulatory factors or the cause and effect relationship of cytoskeletal changes and cellular events. In this article, research involving the cytoskeleton of mycorrhizas is reviewed in detail, whereas basic information of the cytoskeleton of plant and fungal cells is only briefly discussed as background. A brief comparison is also made between the information on mycorrhizas with that of biotrophic pathogenic fungi and the Rhizobium–legume symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akashi T, Yoon Y and Oakley B R 1997 Characterization of gammatubulin complexes in Aspergillus nidulans and detection of putative gamma-tubulin interacting proteins. Cell Motil. Cytoskel. 37, 149-158.

    Google Scholar 

  • Armstrong L and Peterson R L 2002 The interface between the arbuscular mycorrhizal fungus Glomus intraradices and root cells of Panax quinquefolius: a Paris-type mycorrhizal association. Mycologia (in press).

  • Ashford A, Cole L, Hyde G and Orlovich D 1998 New observations on structure, function and motility of vacuoles in Pisolitus tinctorius. In Second International Conference on Mycorrhiza. Eds. U Ahonen-Jonnarth, E Danell, P Fransson, O Kårén, B Lindahl, I Rangel and R Finlay. 20. SLU Service/Repro, Uppsala, Sweden.

    Google Scholar 

  • Åström H, Giovannetti M and Raudaskoski M 1994 Cytoskeletal components in the arbuscular mycorrhizal fungus Glomus mosseae. Mol. Plant-Microbe Interact. 7, 309-312.

    Google Scholar 

  • Bal?ska F and Barlow P W 1993 The role of the microtubular cytoskeleton in determining nuclear chromatin structure and passage of maize root cells through the cell cycle. Eur. J Cell Biol. 61, 160-167.

    Google Scholar 

  • Blancaflor, E B, Zhao L and Harrison M 2001 Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma 217, 154-165.

    Google Scholar 

  • Bonfante P and Perotto S 1995 Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol. 130, 3-21.

    Google Scholar 

  • Bonfante P, Bergero R, Uribe X, Romera C, Rigau J and Puigdomenech P 1996 Transcriptional activation of a maize ?-tubulin gene in mycorrhizal maize and transgenic tobacco plants. Plant J. 9, 737-743.

    Google Scholar 

  • Bourett T M and Howard R J 1992 Actin in penetration pegs of the fungal rice blast pathogen Magnaporthe grisea. Protoplasma 168, 20-26.

    Google Scholar 

  • Bütehorn B, Gianinazzi-Pearson V, Franken P 1999 Quantification of ?-tubulin RNA expression during asymbiotic and symbiotic development of the arbuscular mycorrhizal fungus Glomus mosseae. Mycol. Res. 103, 360-364.

    Google Scholar 

  • Cárdenas L, Vidali L, Domníquez j, Pérez H, Sánchez F, Hepler P K and Quinto C 1998 Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiol. 116, 871-877.

    Google Scholar 

  • Carnero-Diaz M, Martin F and Tagu D 1994 Cloning and characterization of an alpha-tubulin cDNA from eucalyptus ectomycorrhizas. In 4th European Symposium on Mycorrhizas, 11-14 July 1994. Eds. C Axcon-Aguilar and J M Barea. pp. 108. ECSC-EC-EAEC, Granada, Spain.

    Google Scholar 

  • Davidson A L and Newcomb W 2001a Changes in actin microfilament arrays in developing pea root nodule cells. Can. J. Bot. 79: 767-776.

    Google Scholar 

  • Davidson A L and Newcomb W 2001b Organization of microtubules in developing pea root nodule cells. Can. J. Bot. 79: 777-786.

    Google Scholar 

  • Davies E, Stancovic B, Azama K, Shibata K and Abe S 2001 Novel components of the plant cytoskeleton: a beginning to plant 'cytomics'. Plant Sci. 160, 185-196.

    Google Scholar 

  • Dearnaley J D W and McGee P A 1996 An intact microtubule cytoskeleton is not necessary for interfacial matrix formation in orchid protocorm mycorrhizas. Mycorrhiza 6, 175-180.

    Google Scholar 

  • Drubin D G, Miller K G and Botstein D 1988 Yeast actin-binding proteins: evidence for a role in morphogenesis. J. Cell Biol. 107, 2551-2561.

    Google Scholar 

  • Edwards H H and Gessner R V 1984 Light microscopy and transmission electron microscopy of English oak (Quercus robur) ectomycorrhizal short roots. Can. J. Bot. 62, 1327-1335.

    Google Scholar 

  • Genre A and Bonfante P 1997. A mycorrhizal fungus changes microtubule orientation in tobacco root cells. Protoplasma 199, 30-38.

    Google Scholar 

  • Genre A and Bonfante P 1998. Actin versus tubulin configuration in arbuscule-containing cells from mycorrhizal tobacco roots. New Phytol. 140, 745-752.

    Google Scholar 

  • Genre A and Bonfante P 1999 Cytoskeleton-related proteins in tobacco mycorrhizal cells: ?-tubulin and clathrin localization. Eur. J. Histochem. 43, 105-111.

    Google Scholar 

  • Goddard R H, Wick S M, Silflow C D and Snustad P 1994 Microtubule components of the plant cell cytoskeleton. Plant Physiol. 104, 1-6.

    Google Scholar 

  • Gorfer M, Tarkka M T, Hanif M, Pardo A G, Laitiainen E and Raudaskoski M 2001 Characterization of small GTPases Cdc42 and Rac and the relationship between Cdc42 and actin cytoskeleton in vegetative and ectomycorrhizal hyphae of Suillus bovinus. Mol. Plant Microbe Interact. 14, 135-144.

    Google Scholar 

  • Gunning E S and Hardham A R 1982 Microtubules. Annu. Rev. Plant Physiol. 33, 651-698.

    Google Scholar 

  • Heath I B 1990 The roles of actin in tip growth of fungi. Int. Rev. Cytol. 123, 95-127.

    Google Scholar 

  • Heath I B and Heath M C 1976 Ultrastructure of mitosis in the cowpea rust fungus Uromyces phaseoli var. vignae. J. Cell Biol. 70, 592-607.

    Google Scholar 

  • Herr F B and Heath M C 1982 The effects of antimicrotubule agents on organelle positioning in the cowpea rust fungus, Uromyces phaseoli var. vignae. Exp. Mycol. 6, 15-24.

    Google Scholar 

  • Hoch H C and Staples R C 1985 The microtubule cytoskeleton in hyphae of Uromyces phaseoli germlings: Its relationship to the region of nucleation and to the F-actin cytoskeleton. Protoplasma 124, 112-122.

    Google Scholar 

  • Hoch H C, Tucker B E and Staples R C 1987 An intact microtubule cytoskeleton is necessary for mediation of the signal for cell differentiation in Uromyces. Eur. J. Cell Biol. 45, 209-218.

    Google Scholar 

  • Hush J M, Hawes C R and Overall R L 1990 Interphase microtubule re-orientation predicts a new cell polarity in wounded pea roots. J. Cell Sci. 96, 47-61.

    Google Scholar 

  • Inoue S, Turgeon B G, Yoder O C and Aist J R 1998 Role of fungal dynein in hyphal growth, microtubule organization, spindle pole body motility and nuclear migration. J. Cell Sci. 111, 1555-1566.

    Google Scholar 

  • Johnson D I 1999 Cdc42: An essential Rho-type GTPase controlling eucaryotic cell polarity. Microbiol. Mol. Biol. Rev. 63, 54-105.

    Google Scholar 

  • Kilmartin J V and Adams A E M 1984 Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98, 922-933.

    Google Scholar 

  • Kim S J, Bernreuther D, Thumm M and Podila G K 1999 LBAUT7, a novel symbiosis-regulated gene from an ectomycorrhizal fungus, Laccaria bicolor, is functionally related to vesicular transport and autophagocytosis. J. Bacteriol. 181, 1963-1967.

    Google Scholar 

  • Kreis T and Vale R 1999 Cytoskeletal and Motor Proteins. 551 pp. Oxford University Press, New York.

    Google Scholar 

  • Kwon Y H, Hoch H C and Aist J R 1991a Initiation of appressorium formation in Uromyces appendiculatus: Organization of the apex, and the responses involving microtubules and apical vesicles. Can. J. Bot. 69, 2560-2573.

    Google Scholar 

  • Kwon Y H, Hoch H C and Staples R C 1991b Cytoskeletal organization in Uromyces urediospore germling apices during appressorium formation. Protoplasma 165, 37-50.

    Google Scholar 

  • Lambert A-C 1993 Microtubule-organizing centers in higher plants. Curr. Opin. Cell Biol. 5, 116-122.

    Google Scholar 

  • Lichtscheidl I K, Lancelle S A and Hepler P K 1990 Actinendoplasmic reticulum complexes in Drosera. Their structural relationship with the plasmalemma, nucleus, and organelles in cells prepared by high pressure freezing. Protoplasma 155, 116-126.

    Google Scholar 

  • Liu B, Marc J, Joshi H and Palevitz B A 1993 A gamma-tubulin related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J. Cell Sci. 104, 1217-1228.

    Google Scholar 

  • Lloyd C W (Ed.) 1992 The Cytoskeletal Basis of Plant Growth and Form. Academic Press, London.

    Google Scholar 

  • Lloyd C W, Venverloo C J Goodbody K C and Shaw P J 1992 Confocal laser microscopy and three-dimensional reconstruction of nucleus-associated microtubules in the division plane of vacuolated plant cells. J. Microsc. 166, 99-109.

    Google Scholar 

  • Ludueña R F 1993 Are tubulin isotypes functionally significant. Mol. Biol. Cell 4, 445-457.

    Google Scholar 

  • Martin F, Laurent P, de C D, Voiblet C, Balestrini R, Bonfante P and Tagu D 1999 Cell wall proteins of the ectomycorrhizal basidiomycete Pisolithus tinctorius: Identification, function, and expression in symbiosis. Fungal Genet. Biol. 27, 161-174.

    Google Scholar 

  • Matsubara Y, Uetake Y and Peterson R L 1999 Entry and colonization of Asparagus officinalis roots by arbuscular mycorrhizal fungi with emphasis on changes in host microtubules. Can. J. Bot. 77, 1159-1167.

    Google Scholar 

  • Menzel D 1993 Chasing coiled coils: Intermediate filaments in plants. Bot. Acta 106, 294-300.

    Google Scholar 

  • Miller D D, De R N C A, Bisseling T and Emons A M C 1999 The role of actin in root hair morphogenesis: Studies with lipochitooligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J. 17, 141-154.

    Google Scholar 

  • Nick P, Heuing A and Ehmann B 2000 Plant chaperonins: A role in microtubule-dependent wall formation? Protoplasma 211, 234-244.

    Google Scholar 

  • Niini S S and Raudaskoski M 1993 Response of ectomycorrhizal fungi to benomyl and nocodazole: growth inhibition and microtubule depolymerization. Mycorrhiza 3, 83-91.

    Google Scholar 

  • Niini S S, Tarkka M T and Raudaskoski M 1996 Tubulin and actin protein patterns in scots pine (Pinus sylvestris) roots and developing ectomycorrhiza with Suillus bovinus. Physiol. Plant. 96, 186-192.

    Google Scholar 

  • Oakley B R and Rinehart J E 1985 Mitochondria and nuclei move by different mechanisms in Aspergillus nidulans. J. Cell Biol. 101, 2392-2397.

    Google Scholar 

  • Pardo A G, Gorfer M, Hanif M, Tarkka M and Raudaskoski M 2000 Agrobacterium-mediated transformation of mycorrhizal fungi. Plant Physiol. Biochem. 38.

  • Peterson R L and F C Guinel 2000 The use of plant mutants to study regulation of colonization by AMfungi. In Arbuscular Mycorrhizas: Physiology and Function. Eds. Y Kapulnik and D D Douds Jr. pp. 147-171. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Peterson R L, Bonfante P, Faccio A and Uetake Y 1996 The interface between fungal hyphae and orchid protocorm cells. Can. J. Bot. 74, 1861-1870.

    Google Scholar 

  • Peterson R L, Uetake Y and Zelmer C 1998. Fungal symbioses with orchid protocorms. Symbiosis 25, 29-55.

    Google Scholar 

  • Peterson R L, Uetake Y and Armstrong L N 2000 Interactions between fungi and plant cell cytoskeleton. In Current Advances in Mycorrhizae Research. Eds. G K Podila and D. D. Douds. pp. 157-178. APS Press, St. Paul.

    Google Scholar 

  • Petitprez M, Caumont C, Barthou H, Wright M and Alibert G 2001 Two gamma-tubulin isoforms are differentially expressed during development in Helianthus annuus. Physiol. Plant. 111, 102-107.

    Google Scholar 

  • Rasmussen H N 2002 Recent developments in the study of orchid mycorrhiza. Plant Soil 244, 151-165.

    Google Scholar 

  • Raudaskoski M 1998 The relationship between B-mating-type genes and nuclear migration in Schizophyllum commune. Fungal Genet. Biol. 24, 207-227.

    Google Scholar 

  • Raudaskoski M 1970 Occurrence of microtubules and microfilaments, and origin of septa in dicaryotic hyphae of Schizophyllum commune. Protoplasma 70, 415-422.

    Google Scholar 

  • Raudaskoski M, Salo V and Niini S S 1988 Structure and function of the cytoskeleton in filamentous fungi. Karstenia 28, 49-60.

    Google Scholar 

  • Runeberg P, Raudaskoski M and Virtanen I 1986 Cytoskeletal elements in the hyphae of the homobasidiomycete Schizophyllum commune visualized with indirect immunofluorescence and NBD-phallacidin. Eur. J. Cell Biol. 41, 25-32.

    Google Scholar 

  • Salo V, Niini S S, Virtanen I and Raudaskoski M 1989 Comparative immunocytochemistry of the cytoskeleton in filamentous fungi with dikaryotic and multinucleate hyphae. J. Cell Sci. 94, 11-24.

    Google Scholar 

  • Samaj J, Peters M, Volkmann D and Baluska F 2000 Effects of myosin ATPase inhibitor 2,3-butanedione 2-monoxime on distributions of myosins, F-actin, microtubules, and cortical endoplasmic reticulum in maize root apices. Plant Cell Physiol. 41, 571-582.

    Google Scholar 

  • Seagull R W 1989 The plant cytoskeleton. Crit. Rev. Plant Sci. 8, 131-167.

    Google Scholar 

  • Simon V R and Pon L A 1996 Actin-based organelle movement. Experientia 52, 1117-1122.

    Google Scholar 

  • Smith F A and Smith S E 1997 Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol. 137, 373-388.

    Google Scholar 

  • Smith S E and Read D J 1997. Mycorrhizal Symbiosis. 2nd Edition. Academic Press, London.

    Google Scholar 

  • Staehelin L A 1997 The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J. 11, 1151-1165.

    Google Scholar 

  • Steinberg G, Schliwa M, Lehmler C, Boelker M, Kahmann R and McIntosh J R 1998 Kinesin from the plant pathogenic fungus Ustilago maydis is involved in vacuole formation and cytoplasmic migration. J. Cell Sci. 111, 2235-2246.

    Google Scholar 

  • Tagu D and Martin F 1995 Expressed sequence tags of randomly selected cDNA clones from Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza. Mol. Plant Microbe Interact. 8, 781-783.

    Google Scholar 

  • Tarkka M T, Vasara R, Gorfer M and Raudaskoski M 2000 Molecular characterization of actin genes from homobasidiomycetes: Two different actin genes from Schizophyllum commune and Suillus bovinus. Gene Amsterdam 251, 27-35.

    Google Scholar 

  • Thompson-Coffe C and Zickler D 1993 Cytoskeleton interactions in the ascus development and sporulation of Sordaria macrospora. J. Cell Sci. 104, 883-898.

    Google Scholar 

  • Timmers A C J, Auriac M-C, de Billy F and Truchet G 1999 Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126, 3617-3628.

    Google Scholar 

  • Timonen S, Finlay R D, Söderström B and Raudaskoski M 1993 Identification of cytoskeletal components in pine ectomycorrhizas. New Phytol. 124, 83-92.

    Google Scholar 

  • Timonen S, Söderström B and Raudaskoski M 1996 Dynamics of cytoskeletal proteins in developing pine ectomycorrhiza. Mycorrhiza 6, 423-429.

    Google Scholar 

  • Timonen S, Smith F A and Smith S E 2001 Microtubules of mycorrhizal fungus Glomus intraradices in symbiosis with tomato roots. Can. J. Bot. 79, 307-313.

    Google Scholar 

  • Torralba S, Raudaskoski M, Pedregosa A M and Laborda F 1998 Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology Reading 144, 45-53.

    Google Scholar 

  • Tucker B E, Hoch H C and Staples R C 1986 The involvement of Factin in Uromyces cell differentiation: The effects of cytochalasin E and phalloidin. Protoplasma 135, 88-101.

    Google Scholar 

  • Turgeon B G and Bauer W D 1985 Ultrastructure of infection-thread development during the infection of soybean by Rhizobium japonicum. Planta 163, 328-349.

    Google Scholar 

  • Uetake Y, Farquhar M L and Peterson R L 1997 Changes in microtubule arrays in symbiotic orchid protocorms during fungal colonization and senescence. New Phytol. 135, 701-709.

    Google Scholar 

  • Uetake Y and Peterson R L 1997 Changes in actin filament arrays in protocorm cells of the orchid species Spiranthes sinensis, induced by the symbiotic fungus Ceratobasidium cornigerum. Can. J. Bot. 75, 1661-1669.

    Google Scholar 

  • Uetake Y and Peterson R L 1998 Association between microtubules and symbiotic fungal hyphae in protocorm cells of the orchid species, Spiranthes sinensis. New Phytol. 140, 715-722.

    Google Scholar 

  • Uetake Y and Peterson R L 2000 Spatial associations between actin filaments, endoplasmic reticula, mitochondria and fungal hyphae in symbiotic cells of orchid protocorms. Mycoscience 41, 481-489.

    Google Scholar 

  • Vandekerckhove J and Weber K 1984 Chordate muscle actins differ distinctly from invertebrate muscle actins: The evolution of the different vertebrate muscle actins. J. Mol. Biol. 179, 391-414.

    Google Scholar 

  • Warmbrodt R D and Eschrich W 1985 Studies on the mycorrhiza of Pinus sylvestris produced in vitro with the basidiomycete Suillus variegatus: 2. Ultrastructural aspects of the endodermis and vascular cylinder of the mycorrhizal rootlets. New Phytol. 100, 403-418.

    Google Scholar 

  • Watts F Z, Miller D M and Orr E 1985 Identification of myosin heavy chain in Saccharomyces cerevisiae. Nature 316, 83-85.

    Google Scholar 

  • Whitehead L F, Day D A and Hardham A R 1998 Cytoskeletal arrays in the cells of soybean root nodules: the role of actin microfilaments in the organization of symbiosomes. Protoplasma 203, 194-205.

    Google Scholar 

  • Yu W and Moreno D D L E S 1999 The plant nucleoskeleton: Ultrastructural organization and identification of NuMA homologues in the nuclear matrix and mitotic spindle of plant cells. Exp. Cell Res. 246, 516-526.

    Google Scholar 

  • Yuan M, Shaw P J, Warn R M, Lloyd C W 1994 Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. Proc. Nat. Acad. Sci. USA Cell Biol. 91, 6050-6053.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sari Timonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timonen, S., Peterson, R.L. Cytoskeleton in mycorrhizal symbiosis. Plant and Soil 244, 199–210 (2002). https://doi.org/10.1023/A:1020209213524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020209213524

Navigation