Skip to main content
Log in

Electrical conductivity of indium sesquioxide thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports electrical properties of In2O3 thin film (100 nm) at elevated temperatures (667–1118 K) and under controlled oxygen activity. The present study, based on the measurements of electrical conductivity (EC) using the method proposed by van der Pauw, includes the following determinations: Dynamics of EC changes during gas/solid equilibration of the O2/In2O3 system; The dependence of EC on oxygen partial pressure dependence; The dependence of EC on temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Sauter, U. Weimar, G. Noetzel, J. Mitrovics and W. GÖpel, Sens. Actuators B 69 (2000) 1.

    Google Scholar 

  2. T. Takada, in “Chemical Sensor Technology”, edited by T. Seyama (Elsevier, Amsterdam, 1989) vol. 2 p. 59.

    Google Scholar 

  3. T. Takada, K. Suzuki and M. Nakane, Sens. Actuators B 13–14 (1993) 404.

    Google Scholar 

  4. A. Gurlo, M. Ivanovskaya, N. Barsan, M. Schweizer-Berberich, U. Weimar, W. GÖpel and A. Dieguez, ibid. 44 (1997) 327.

    Google Scholar 

  5. C. Cantalini, W. Wlodarski, H. T. Sun, M. Z. Atashbar, M. Passacantando, A. R. Phani and S. Santucci, Thin Solid Films 350 (1999) 276.

    Google Scholar 

  6. C. Cantalini, W. Wlodarski, H. T. Sun, M. Z. Atashbar, M. Passacantando and S. Santucci, Sens. Actuators B 65 (2000) 101.

    Google Scholar 

  7. L. J. Van Der Pauw, Philips Res. Rep. 13 (1958) 1.

    Google Scholar 

  8. D. A. Benda, “Investigations of Surface Acoustic Wave Gas Sensors”, PhD thesis, RMIF, 1996.

  9. P. Kofstad, in “Electrical Conductivity, Nonstoichiometry and Diffusion in Binary Metal Oxides” (Wiley, New York, 1972) p. 348.

    Google Scholar 

  10. J. L. Bates, W. J. Weber and C. W. Griffin, “Proceedings of the First International Symposium on Solid Oxide Fuel Cells”, edited by S. C. Senghal (The Electrochemical Society, Pennington NJ, 1989) p. 141.

    Google Scholar 

  11. S. S. Liou and W. L. Worell, Appl. Phys. A 49 (1989) 25.

    Google Scholar 

  12. H. L. Tuller, in “Nonstoichiometric Oxides”, edited by O. T. Sørensen (Academic Press, New York, 1981) p. 271.

    Google Scholar 

  13. Y. Takeda, R. Kanno, M. Noda, Y. Tomida and O. Yamamoto, J. Electrochem. Soc. 134 (1987) 2656.

    Google Scholar 

  14. I. Hamberg and C. G. Granqvist, J. Appl. Phys. 60 (1986) R123.

    Google Scholar 

  15. D. B. Fraser and H. D. Cook, J. Electrochem. Soc. 119 (1972) 1368.

    Google Scholar 

  16. J. C. C. Fan, T. B. Reed and J. B. Goodenough, “Proceedings of the Ninth Intersociety Energy Conversion Engineering Conference” (ASME, New York, 1974) 341.

    Google Scholar 

  17. S. Yoshida, Appl. Opt. 17 (1978) 145.

    Google Scholar 

  18. H. KÖstlin, Philips Technol. Rev. 34 (1974) 242.

    Google Scholar 

  19. F. J. Rohr, in “Solid Electrolytes”, edited by P. Hagenmüeler; and W. Van Gool (Academic Press, 1978) p. 431.

  20. K. Sasaki, H. P. Seifert and L. J. Gauckler, J. Electrochem. Soc. 141 (1994) 2759

    Google Scholar 

  21. K. Otsuka, T. Yasui and A. Morikawa, Bull. Chem. Soc. Jpn. 55 (1982) 1768.

    Google Scholar 

  22. H. Yamamura, J. Tamaki, K. Moriya, N. Miura and N. Yamazoe, J. Electrochem. Soc. 144 (1997) L158.

    Google Scholar 

  23. G. Sbervergliery, S. Groppelli and G. Coccoli, Sens. Actuators 15 (1988) 235.

    Google Scholar 

  24. T. Sugai, T. Matsuzawa, Y. Muruyama, M. Sato and M. Sakaguchi, “Digest of the Ninth Chemical Sensor Symposium” (Tokyo, Japan, Oct. 21–22, 1989), pp. 101.

  25. J. Klaperis, M. Kundzis, G. Vitnis, V. Eglitis, G. Vaivars and A. Lusis, Sens. Actuators B 28 (1995) 135.

    Google Scholar 

  26. G. Vaivars, J. Klaperis, J. Zubkans, G. Vitnis, G. Liberts and A. Lusis, ibid. 33 (1996) 173.

    Google Scholar 

  27. Y. Yasukawa, T. Seki and J. Muramatsu, ibid. 13–14 (1993) 613.

    Google Scholar 

  28. N. G. Patel, K. K. Makhija, C. J. Panchal, D. B. Dave and V. S. Vaishnav, ibid. 23 (1995) 49.

    Google Scholar 

  29. A. Galdikas, Z. MartŪnas and A. SĚtkus, ibid. 7 (1992) 633.

    Google Scholar 

  30. A. J. Rosenberg and M. C. Lavine, J. Phys. Chem. 64 (1960) 1135.

    Google Scholar 

  31. A. J. Rosenberg, ibid. 64 (1960) 1143.

    Google Scholar 

  32. J. H. W. De Wit, J. Solid State Chem. 8 (1973) 142.

    Google Scholar 

  33. J. H. W. De Wit, ibid. 20 (1977) 143.

    Google Scholar 

  34. G. P. Wirtz and H. P. Takiar, J. Am. Ceram. Soc. 64 (1981) 748.

    Google Scholar 

  35. G. Frank and H. KÖstlin, Appl. Phys. A 27 (1982) 197.

    Google Scholar 

  36. T. Maruyama, Y. Saito, M. Shinohara, Y. Aoyama and W. Komatsu, “Proceedings of the Symposium on Electro-Ceramics and Solid-State Ionics”, edited by H. L. Tuller and D. M. Smyth (Electrochem. Soc., 1988) p. 104.

  37. C. H. L. Weijtens, J. Electrochem. Soc. 138 (1991) 3432.

    Google Scholar 

  38. Z. S. Teweldemedhin, K. V. Ramanujachary and M. Greenblatt, J. Solid State Chem. 86 (1991) 109.

    Google Scholar 

  39. T. Suzuki, T. Yamazaki, M. Takizawa and O. Kawasaki, J. Mater. Sci. 24 (1989) 187.

    Google Scholar 

  40. N. Balasubramanian and A. Subrahmanyam, Mater. Sci. Eng. B 1 (1988) 279.

    Google Scholar 

  41. S. Shimada, I. Sato and K. Kodaira, J. Electrochem. Soc. 135 (1988) 3165.

    Google Scholar 

  42. T. Suzuki, T. Yamazaki and H. Oda, J. Master. Sci. 23 (1988) 3026.

    Google Scholar 

  43. N. N. Dinh, V. T. Bich, N. H. Hoang, T. X. Hoai, V. N. Quynh and N. V. Chanh, Phys. Status Solidi A (1988) K147.

  44. J. Trefny and N. Mitra, Thin Solid Films 157 (1988) 7.

    Google Scholar 

  45. T. Furusaki, K. Kodaira, M. Yamamoto, S. Shimada and T. Matsuhita, Mater. Res. Bull. 21 (1986) 803.

    Google Scholar 

  46. J. L. Bates, C. W. Griffin, D. D. Marchant and J. E. Garnier, Am. Ceram. Soc. Bull. 65 (1986) 673.

    Google Scholar 

  47. Y. Kanai, Jap. J. Appl. Phys. 24 (1985) L361.

    Google Scholar 

  48. Y. Kanai, ibid. 23 (1984) L12.

    Google Scholar 

  49. G. P. Wirtz and H. S. Isaacs, Solid State Ion. 9&10 (1983) 63.

    Google Scholar 

  50. M. Buchanan, J. B. Webb and D. F. Williams, Appl. Phys. Lett. 37 (1980) 213.

    Google Scholar 

  51. J. H. W. De Wit, G. Van Unen and M. Lahey, J. Phys. Chem. Solids 38 (1977) 819.

    Google Scholar 

  52. J. H. W. De Wit, J. Solid State Chem. 13 (1975) 192.

    Google Scholar 

  53. H. K. MÜller, Phys. State Solids 27 (1968) 723.

    Google Scholar 

  54. R. Groth, ibid. 11 (1966) 69.

    Google Scholar 

  55. J. P. Remeika and E. G. Spencer, J. Appl. Phys. 35 (1964) 2803.

    Google Scholar 

  56. M. J. Arvin, J. Phys. Chem. Solids 23 (1962) 1681.

    Google Scholar 

  57. R. L. Weiher, J. Appl. Phys. 33 (1962) 2834.

    Google Scholar 

  58. G. Rupprecht, Z. Phys. 139 (1954) 504.

    Google Scholar 

  59. I. Kaur and W. Gust, in “Fundamentals of Grain and Interface Boundary Diffusion” (Ziegler Press, Stuttgart, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bak, T., Nowotny, J., Rekas, M. et al. Electrical conductivity of indium sesquioxide thin film. Journal of Materials Science: Materials in Electronics 13, 571–579 (2002). https://doi.org/10.1023/A:1020194513449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020194513449

Keywords

Navigation