Skip to main content
Log in

Influence of copper anion complexes on the incorporation of metal particles in polyaniline Part II: Copper oxalate complex

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Copper deposition at polyaniline (PAN) coated electrodes is studied using copper oxalate complexes as reducing species. It is found that a high number (3.4 × 108 cm−2) of single sized (~150 nm), regular shaped crystals can be obtained. Statistical analysis of the distances between neighbouring crystals shows deviation from a random surface distribution. This finding is discussed both in terms of origin and overlap of nucleation exclusion zones and of the influence of the finite size of the copper crystals. Experiments performed under potentiostatic conditions give evidence for instantaneous copper nucleation and growth under phase boundary transition limitations. Results concerning number, size and shape of copper crystals deposited in a similar way using three different reducing species (i.e., copper cations, copper citrate and copper oxalate complex anions) are compared. It is established that the copper oxalate complex anions allow for deposition of the largest number of small metal crystals. This result is related to both the initial oxidation state of the PAN layer in the oxalate solution and to the specific properties of the anion complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. Kost, D.E. Bartak, B. Kazee and Th. Kuwana, Anal. Chem. 60 (1988) 2379.

    Google Scholar 

  2. S. Holdcroft and B. Lionel Funt, J. Electroanal. Chem. 240 (1988) 89.

    Google Scholar 

  3. P. Ocon Esteban, J.M. Leger and C. Lamy, J. Appl. Electrochem. 19 (1989) 462.

    Google Scholar 

  4. M. Gholamian and A.Q. Contractor, J. Electroanal. Chem. 289 (1990) 69.

    Google Scholar 

  5. Ch. Hable and M.S. Wrighton, Langmuir 9 (1993) 3284.

    Google Scholar 

  6. R. Kostecki, M. Ulmann, J. Augustynski, D.J. Strike and M. Koudelka-Hep, J. Phys. Chem. 97 (1993) 8113.

    Google Scholar 

  7. J-C. Moutet, Y. Ouennoughi, A. Ourari and S. Hamar-Thibault, Electrochim. Acta 40 (1995) 1827.

    Google Scholar 

  8. M. Hepel, J. Electrochem. Soc. 145 (1998) 124.

    Google Scholar 

  9. F. Ficicioglu and F. Kadirgan, J. Electroanal. Chem. 451 (1998) 95.

    Google Scholar 

  10. M.A. del Valle, F.R. Diaz, M.E. Bodini, T. Pizarro, R. Cordova, H. Gomez and R. Schrebler, J. Appl. Electrochem. 28 (1998) 943.

    Google Scholar 

  11. K. Bouzek, K-M. Mangold and K. Juettner, Electrochim. Acta 46 (2000) 661.

    Google Scholar 

  12. C. Coutanceau, M. J. Croissant, T. Napporn and C. Lamy, Electrochim. Acta 46 (2000) 579.

    Google Scholar 

  13. A. Yassar, J. Roncali and F. Garnier, J. Chem. Phys. 86 (1989) 241.

    Google Scholar 

  14. A. Zouaoui, O. Stephan, M. Carrier and J-C. Moutet, J. Electroanal. Chem. 474 (1999), 113.

    Google Scholar 

  15. S. Ivanov and V. Tsakova, J. Appl. Electrochem., this issue.

  16. V. Tsakova, D. Borissov, B. Ranguelov, Ch. Stromberg and J.W. Schultze, Electrochim. Acta 46 (2001) 4213.

    Google Scholar 

  17. A.E. Martell and R.M. Smith, 'Critical Stability Constants', Vols 1–3, (Plenum Press, New York, 1977).

    Google Scholar 

  18. Gmelin's 'Handbuch der anorganischen Chemie', Vol. 60, Tl.B, Lfg.2, pp. 798–799.

  19. A. Milchev, E. Vassileva and V. Kertov, J. Electroanal. Chem. 107 (1980) 323.

    Google Scholar 

  20. A. Milchev, Electrochim. Acta 28 (1983) 947.

    Google Scholar 

  21. A. Serruya, J. Mostany and B.R. Scharifker, J. Chem. Soc. Faraday Trans. 89 (1993) 255.

    Google Scholar 

  22. W.S. Kruijt, M. Sluyters-Rehbach, J.H. Sluyters and A. Milchev, J. Electroanal. Chem. 371 (1994) 13.

    Google Scholar 

  23. U. Scmidt, M. Donten and J.G. Osteryoung, J. Electrochem. Soc. 144 (1997) 2013.

    Google Scholar 

  24. W-S. Huang, B. Humphrey and A.G. Macdiarmid, J. Chem. Soc., Faraday Trans. 82 (1986) 2385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Tsakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, S., Tsakova, V. Influence of copper anion complexes on the incorporation of metal particles in polyaniline Part II: Copper oxalate complex. Journal of Applied Electrochemistry 32, 709–715 (2002). https://doi.org/10.1023/A:1020180703196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020180703196

Navigation