Skip to main content
Log in

Human demineralised bone matrix as a bone substitute for reconstruction of cystic defects of the lower jaw

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Ina retrospective study validated by a standardized clinical and radiologicalexamination, the bone regeneration in 90 patients with cystic mandibulardefectswas examined. In 50 patients bony defect reconstructions with humandemineralised bone matrix (HDBM) were carried out, while in a comparable groupof 40 patients the hollow pockets were left to regenerate bone spontaneously.The bone regeneration after the implantation of human demineralised bone matrix(HDBM) was subjected to a comparative validation. Osteoinductive proteinspresent in HDBM (bone morphogenetic proteins) can diffuse into the implant seatand induce new bone formation (osteoinduction). A markedly faster and morethorough bone regeneration was demonstrated after the surgical therapy ofcysticmandibular lesions with HDBM than without. HDBM also proved to be exceptionallybiocompatible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cunningham N.S. and Reddi A.H. 1992. Biologic principles of bone induction: application of bone grafts. In: Habal M.B. and Reddi A.H. (eds), Bone grafts and bone substitutes. Saunders, Philadelphia, USA, pp. 93–98.

    Google Scholar 

  • Delloye C. 1999. The use of Freeze-dried Mineralised and Demineralised Bone: Chapter 2 Bone Allografts. In: Phillips G.O., Strong D.M., von Versen R. and Nather A. (eds), Advances in Tissue Banking Vol. 3. World Scientific, Singapore, pp. 45–65.

    Google Scholar 

  • Denner K., von Versen R., Freistedt B., Klein M. and Dehmlow R. 1989. Zur Relevanz laborchemischer Methoden zur Bewertung der Osteoinduktivitët von Knochenmatrix-implantaten. Z. med. Lab. diagn. 30: 159–164.

    Google Scholar 

  • Gerhardt O. 1998. Keratozysten in der Mund-, Kiefer-und Gesich tschirurgie, thesis, Humboldt-Universitét zu Berlin.

    Google Scholar 

  • Heubisch W. 1996. Rechtliche Zulcssigkeit der Anwendung von gefriergetrocknetem humanen Knochenmaterial. Bay. Zahnréztebl. 4: 53–54.

    Google Scholar 

  • Kramer I.R.H., Pindborg J.J. and Shear M. 1992. Histological typing of odontogenic tumors. In: WHO International Histological Classification of Tumors. 2nd edn. Springer-Verlag, Berlin.

    Google Scholar 

  • Kübler N.R., Steveling H., Reuther J., Bialas M. and Urist M.R. 1993. Auffullüng von Kieferzysten mit autolysiertem, allogenem Knochen (AAA-Bone). Dtsch. Z. Mund. Kiefer. GesichtsChir. 17: 95–97.

    Google Scholar 

  • Kübler N.R. 1997. Osteoinduktion und-reparation. Mund. Kiefer. GesichtsChir. 1: 2–25.

    Google Scholar 

  • Kübler N.R. 1998. Knochenregeneration durch Osteoinduktion. Dtsch. Zahnarztl. Z. 53: 834–843.

    Google Scholar 

  • Nogami H. and Urist M.R. 1975. Transmembrane bone matrix gelatin induced differentiation of bone. Calcif. Tissue Res. 19: 153–163.

    Google Scholar 

  • Reddi A.H. and Huggins C.B. 1972. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc. Natl. Acad. Sci. USA. 69: 1601–1605.

    Google Scholar 

  • Senn N. 1889. On the healing of aseptic bone cavities by implantation of antiseptic decalcified bone. Am. J. Med. Sci. 98: 219–243.

    Google Scholar 

  • Singer R. and Ratajczak T. 1996. Zur Problematik von Knoch enersatzmaterialien in der zahnärztlichen/kieferchirurgischen¨ Praxis. Bay. Zahnärztebl. 7/8: 83–86.

    Google Scholar 

  • Soost F., Stoll C., Gerhardt O. and Neumann H.J. 1999. Keratozysten der Kiefer mit Ausbreitung in die Schädelbasis. Zentralbl. Neurochir. 60: 11–14.

    Google Scholar 

  • Soost F. 2000. Validierung des Knochenumbaus von Knochenersatzmaterialien in der Mund-, Kiefer-und Gesichtschirurgie Habilitationsschrift. Humboldt-Universität, Berlin.

    Google Scholar 

  • Terheyden H., Jepsen S., Vogeler S., Tucker M. and Rueger D.C. 1997. Recombinant human osteogenic protein 1 in the rat mandibular augmentation model: differences in morphology of the newly formed bone are dependent on the type of carrier. Mund. Kiefer. GesichtsChir. 1: 272–275.

    Google Scholar 

  • Thielicke U., Thielicke B., von Versen R. and Denner K. 1990. Klinische Studie zum Einsatz von demineralisierter Knochenmatrix (DBM) in der Chirurgischen Stomatologie. Beitr. Orthop. Traumatol. 37: 461–465.

    Google Scholar 

  • Urist M.R. 1965. Bone Formation by autoinduction. Science 150: 893–899.

    Google Scholar 

  • Urist M.R., Silverman B.F., Buring K., Dubuc F.L. and Rosenberg J.M. 1967. The bone induction principle. Clin. Orthop. 53: 243–283.

    Google Scholar 

  • von Versen R., Denner K., Freistedt B., Sehrt B. and Matthes G. 1989. Verfahren zur Präparation demineralisierter Knochenmatrix. Z. med. Lab. diagn. 30: 154–158.

    Google Scholar 

  • Wissenschäftlicher Beirat der Bundesarztekammer: Richtlinien and Nather A. (eds), Advances in Tissue Banking Vol. 3. World zum Führen einer Knochenbank. 93: 49–53.

  • Wolfinbarger J.L. 1999. Processing factors contributing to production of maximally osteoinductive demineralised ground bone for use in orthopaedic or periodontal applications: Chapter 2 Bone Allografts. In: Phillips G.O., Strong D.M., von Versen R. Scientific, Singapore, pp. 125–145.

    Google Scholar 

  • Yim C.J. 1999. Biology of the demineralised bone and its clinical use: Chapter 2 Bone Allografts. In: Phillips G.O., Strong D.M., von Versen R. and Nather A. (eds), Advances in Tissue Banking Vol. 3. World Scientific, Singapore, pp. 87–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhls, R., Werner-Rustner, M., Küchler, I. et al. Human demineralised bone matrix as a bone substitute for reconstruction of cystic defects of the lower jaw. Cell Tissue Banking 2, 143–153 (2001). https://doi.org/10.1023/A:1020173119669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020173119669

Navigation