Skip to main content
Log in

Antisense Therapy: Current Status in Prostate Cancer and Other Malignancies

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Recent technological advances now allowing both large scale data generation and its in-depth analysis have opened new avenues to identify and target genes involved in neoplastic transformation and tumor progression. This accelerated identification and characterization of cancer-relevant molecular targets has sparked considerable interest in the development of new generations of anti-cancer agents. It is anticipated, that these agents will show enhanced specificity for malignant cells and a more favorable side-effect profile due to well-defined and tailored modes of action. Antisense oligonucleotides (ASOs) are short synthetic stretches of chemically modified DNA capable of specifically hybridizing to the mRNA of a chosen cancer-relevant target gene are close, after decades of challenges, close to fulfilling their promise in the clinical setting. Emerging clinical evidence supports the notion that ASOs stand a realistic chance of developing into one of the main players of rationally designed anti-cancer agents, although certainly not all of the challenges have been met to date. The status of antisense targeting of genes relevant to prostate cancer, including bcl-2, bcl-xL, clusterin, androgen receptor (AR) and IGFBPs, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belikova AM ZVGN: Synthesis of ribonucleosides and diribonucleosides phosphates containing 2-chloroethylamine and nitrogen mustard residues. Tetrahedron Lett 37: 3357–3362, 1967

    Google Scholar 

  2. Paterson BM, Roberts BE, Kuff EL: Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci USA 74: 4370–4374, 1977

    Google Scholar 

  3. Zamecnik PC, Stephenson ML: Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75: 280–284, 1978

    Google Scholar 

  4. Donis-Keller H: Site specific enzymatic cleavage of RNA 2. Nucleic Acids Res 7: 179–192, 1979

    Google Scholar 

  5. Monia BP, Lesnik EA, Gonzalez C, Lima WF, McGee D, Guinosso CJ, Kawasaki AM, Cook PD, Freier SM: Evaluation of 2´-modified oligonucleotides containing 2´-deoxy gaps as antisense inhibitors of gene expressio. J Biol Chem 268: 14514–14522, 1993

    Google Scholar 

  6. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498, 2001

    Google Scholar 

  7. Bacon TA, Wickstrom E: Walking along human c-myc mRNA with antisense oligodeoxynucleotides: Maximum efficacy at the 5´ cap region. Oncogene Res 6: 13–19, 1991

    Google Scholar 

  8. Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D: Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 2: 668–675, 1996

    Google Scholar 

  9. Ziegler A, Luedke GH, Fabbro D, Altmann KH, Zangemeister-Wittke U. Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the Bcl-2 coding sequence. J Nat Cancer Inst 89: 1027–1036, 1997

    Google Scholar 

  10. Milner N, Mir KU, Southern EM: Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nat Biotechnol 15: 537–541, 1997

    Google Scholar 

  11. Ho SP, Bao Y, Lesher T, Malhotra R, Ma LY, Fluharty SJ, Sakai RR: Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nat Biotechnol 16: 59–63, 1998

    Google Scholar 

  12. Mathews DH, Sabina J, Zuker M, Turner DH: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288: 911–940, 1999

    Google Scholar 

  13. Crooke ST: Molecular mechanisms of antisense drugs: RNase H. Antisense Nucleic Acid Drug Development 8: 133–134, 1998

    Google Scholar 

  14. Galderisi U, Cascino A, Giordano A: Antisense oligonucleotides as therapeutic agents 4. J Cell Physiol 181: 251–257, 1999

    Google Scholar 

  15. Agrawal S: Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Biochim Biophys Acta 1489: 53–68, 1999

    Google Scholar 

  16. Krieg AM, Yi AK, Hartmann G: Mechanisms and therapeuticc applications of immune stimulatory cpG DNA. Pharmacol Ther 84: 113–120, 1999

    Google Scholar 

  17. Altmann KH, Dean NM, Fabbro D, Freier SM, Geiger T, Haener R, Huesken D, Martin P, Monia BP, Mueller M, Natt F, Nicklin P, Phillips J, Pieles U, Sasmor H, Moser HE: Second generation of antisense oligonucleotides: From nuclease resistance to biological efficacy in animals. Chimia 50: 168–176, 1996

    Google Scholar 

  18. Wahlestedt C, Salmi P, Good L, Kela J, Johnsson T, Hokfelt T, Broberger C, Porreca F, Lai J, Ren K, Ossipov M, Koshkin A, Jakobsen N, Skouv J, Oerum H, Jacobsen MH, Wengel J: Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci USA 97: 5633–5638, 2000

    Google Scholar 

  19. Baker BF, Lot SS, Condon TP, Cheng-Flournoy S, Lesnik ES, Sasmor HM, Bennett CF: 2´-O-(2-methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J Biol Chem 272: 11994–12000, 1997

    Google Scholar 

  20. McKay RA, Miraglia LJ, Cummins LL, Owens RS, Sasmor H, Dean NM: Characterization of a potent and specific class of antisense oligonucleotide inhibitor of human protein kinase C-α expression. J Biol Chem 274: 1715–1722, 1999

    Google Scholar 

  21. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 100: 57–70, 2000

    Google Scholar 

  22. Adams JM, Cory S: The Bcl-2 protein family: Arbiters of cell survival. Science 281: 1322–1326, 1998

    Google Scholar 

  23. Folkman J: The role of angiogenesis in tumor growth. Semin Cancer Biol 3: 65–71, 1992

    Google Scholar 

  24. John A, Tuszynski G: The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7: 14–23, 2001

    Google Scholar 

  25. Isaacs JT, Wake N, Coffey DS, Sandberg AA: Genetic instability coupled to clonal selection as a mechanism for progression in prostatic cancer. Cancer Res 42-48: 2353, 1982

    Google Scholar 

  26. Miyake H, Tolcher A, Gleave ME: Antisense Bcl-2 oligodeoxynucleotides delay progression to androgen-independence after castration in the androgen dependent Shionogi tumor model. Cancer Res 59: 4030–4034, 1999

    Google Scholar 

  27. Miyake H, Rennie P, Nelson C, Gleave ME, Miyake H, Rennie P, Nelson C, Gleave ME: Testosterone-repressed prostate message-2 (TRPM-2) is an antiapoptotic gene that confers resistance to androgen ablation in prostate cancer xenograft models. Cancer Res 60: 170–176, 2000

    Google Scholar 

  28. Bruchovsky N, Rennie PS, Coldman AJ, Goldenberg SL, To M, Lawson D: Effects of androgen withdrawal on the stem cell composition of the Shionogi carcinoma. Cancer Res 50: 2275–2282, 1990

    Google Scholar 

  29. Miyake H, Nelson C, Rennie P, Gleave ME: Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgen-independence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3´-kinase pathway. Endocrinology 141: 2257–2265, 2000

    Google Scholar 

  30. Sato N, Sadar MD, Bruchovsky N, Saatcioglu F, Rennie PS, Sato S, Lange PH, Gleave ME: Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between androgen receptor and AP-1c-Jun in the Human Prostate Cancer Cell Line LNCaP. J Bio Chem 272(28): 17485–17494, 1997

    Google Scholar 

  31. Craft N, Shostak Y, Carey M, Sawyers C: A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nature Medicine 5: 280–285, 1999

    Google Scholar 

  32. Sherwood ER, Van Dongen JL, Wood CG, Liao S, Kozlowski JM, Lee C: Epidermal growth factor receptor activation in androgen-independent but not androgen-stimulated growth of human prostatic carcinoma cells. Br J Cancer 77(6): 855–861, 1998

    Google Scholar 

  33. Abreu-Martin MT, Chari A, Palladino AA, Craft NA, Sawyers CL: Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol Cell Biol 19: 5143–5154, 1999

    Google Scholar 

  34. Oh WK, Kantoff PW: Management of hormone refractory prostate cancer: Current standards and future prospects. J Urol 60: 1220–1229, 1998

    Google Scholar 

  35. Hudes GR, Nathan F, Khater C, Haas N, Cornfield M, Giantonio B, Greenberg R, Gomella L, Litwin S, Ross E, Roethke S, McAleer C: Phase II trial of 96-hour paclitaxel plus oral estramustine phosphate in metastatic hormone-refractory prostate cancer. J Clin Oncol 15: 3156–3163, 1997

    Google Scholar 

  36. Petrylak DP, Macarthur R, O'Connor J, Shelton G, Weitzman A, Judge T, England-Owen C, Zuech N, Pfaff C, Newhouse J, Bagiella E, Hetjan D, Sawczuk I, Benson M, Olsson C: Phase I trial of docetaxel with estramustine in androgen-independent prostate cancer. J Clin Oncol 17: 958–967, 1999

    Google Scholar 

  37. Smith DC, Esper D, Strawderman M, Redman B, Pienta KJ: Phase II trial of oral estramustine, oral etopside, and intravenous paclitaxel in hormone-refractory prostate cancer. J Clin Oncol 17: 1664–1671, 1999

    Google Scholar 

  38. Tsujimoto Y, Croce CM: Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA: 5214–5218, 1986

  39. Sato T, Hanada M, Bodnig S, Ine S, Iwana N, Boise LH, Thompson C, Golemia E, Fong L, Wang H-G, Reed JC: Interactions among members of the bcl-2 protein family analysed with a yeast two-hybrid systems. Proc Nat Ass Sci USA 91: 9238–9242, 1994

    Google Scholar 

  40. McDonnell TJ, Troncoso P, Brisby SM, Logothetis CL, Chung LWK, Hsieh JT, Tu SM, Campbell ML: Expression of the protooncogene Bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52: 6940–6944, 1992

    Google Scholar 

  41. Colombel M, Symmans F, Gil S, O'Toole KM, Chopin D, Benson M, Olsson CA, Korsmeyer S, Buttyan R: Detection of the apoptosis-suppressing oncoprotein Bcl-2 in hormone-refractory human prostate cancers. Am J Pathol 143: 390–400, 1993

    Google Scholar 

  42. Raffo AJ, Periman H, Chen MW, Streitman JS, Buttyan R: Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55: 4438–4445.29, 1995

    Google Scholar 

  43. Patterson R, Gleave M, Jone E, Zubovits J, Goldenberg SL, Sullivan LD: Immunohistochemical analysis of radical prostatectomy specimens after 8 months of neoadjuvant hormone therapy. Mol Urol 3: 277–286, 1999

    Google Scholar 

  44. Jansen B, Schlagbauer-Wadl H, Brown BD, Bryan RN, van Elsas A, Muller M, Wolff K, Eichler HG, Pehamberger H: bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nature Med 4: 232–234, 1998

    Google Scholar 

  45. Miyake H, Tolcher A, Gleave ME: Antisense Bcl-2 oligodeoxynucleotides enhance taxol chemosensitivity and synergistically delays progression to androgen-independence after castration in the androgen dependent Shionogi tumor model. JNCI 92: 34–41, 2000

    Google Scholar 

  46. Gleave ME, Tolcher A, Miyake H, Beraldi E, Goldie J: Progression to androgen-independence is delayed by antisense Bcl-2 oligodeoxynucleotides after castration in the LNCaP prostate tumor model. Clinical Cancer Res 5: 2891–2898, 1999

    Google Scholar 

  47. Webb A, Cunningham D, Cotter F, Clarke PA, di Stefano F, Ross P, Corbo M, Dziewanowska Z: BCL-2 antisense therapy in patients with non-hodgkin-lymphoma. Lancet 349: 1137–1141, 1997

    Google Scholar 

  48. Waters JS, Webb A, Cunningham D, Clarke PA, Raynaud F, di Stefano F, Cotter FE: Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma. J Clin Oncol 18: 1812–1823, 1997

    Google Scholar 

  49. Morris MJ, Tong WP, Cordon-Cardo C, Drobnjak M, Kelly WK, Slovin SF, Terry KL, DiPaola RS, Rafi M, Rosen N, Scher HI: Intravenous BCL-2 antisense alone and in combination with paclitaxel in patients with advanced cancer. Clin Cancer Res 8(3): 679–683, 2002

    Google Scholar 

  50. Jansen B, Wacheck V, Heere-Ress E, Schlagbauer-Wadl H, Hoeller C, Lucas T, Hoermann M, Hollenstein U, Wolff K, Pehamberger H: Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356: 1728–1733, 2000

    Google Scholar 

  51. Chi KN, Gleave ME, Klasa R, Murray N, Bryce C, Lopes de Menezes DE, D'Aloisio S, Tolcher AW: A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin Cancer Res 7(12): 3920–3927, 2001

    Google Scholar 

  52. Leech SH, Olie RA, Gautschi O, Simoes-Wust AP, Tschopp S, Haner R, Hall J, Stahel RA, Zangemeister-Wittke U: Induction of apoptosis in lung-cancer cells following bcl-xL anti-sense treatment. Int J Cancer 86: 570–576, 2000

    Google Scholar 

  53. Simoes-Wust AP, Olie RA, Gautschi O, Leech SH, Haner R, Hall J, Fabbro D, Stahel RA, Zangemeister-Wittke U: Bcl-xl antisense treatment induces apoptosis in breast carcinoma cells. Int J Cancer 87: 582–590, 2000

    Google Scholar 

  54. Lebedeva I, Rando R, Ojwang J, Cossum P, Stein CA: Bcl-xL in prostate cancer cells: Effects of overexpression and down-regulation on chemosensitivity 1. Cancer Res 60: 6052–6060.34, 2000

    Google Scholar 

  55. Miyaki H, Monia B, Gleave ME: Antisense Bcl-xL and Bcl-2 Oligodeoxynucleotides synergistically enhance taxol chemosensitivity and delay progression to androgenindependence after castration in the androgen dependent Shionogi tumor model. Int J Cancer 86: 855–862, 2000

    Google Scholar 

  56. Zangemeister-Wittke U, Leech SH, Olie RA, Simoes-Wust AP, Gautschi O, Luedke GH, Natt F, Haner R, Martin P, Hall J, Nalin CM, Stahel RA: A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently induces apoptosis in tumor cells. Clin Cancer Res 6: 2547–2555, 2000

    Google Scholar 

  57. Gautschi O, Tschopp S, Olie RA, Leech SH, Simoes-Wust AP, Ziegler A, Baumann B, Odermatt B, Hall J, Stahel RA, Zangemeister-Wittke U: Activity of a novel bcl-2/bcl-xL-bispecific antisense oligonucleotide against tumors of diverse histologic origins. J Natl Cancer Inst 93: 463–471, 2001

    Google Scholar 

  58. Newton AC. Regulation of protein kinase C. Curr Opin Cell Biol 9: 161–167, 1997

    Google Scholar 

  59. Yazaki T, Ahmad S, Chahlavi A, Zylber-Katz E, Dean NM, Rabkin SD, Martuza RL, Glazer RI: Treatment of glioblastoma U-87 by systemic administration of an antisense protein kinase C-alpha phosphorothioate oligodeoxynucleotide. Mol Pharmacol 50: 236–242, 1996

    Google Scholar 

  60. Geiger T, Muller M, Dean NM, Fabbro D: Antitumor activity of a PKC-alpha antisense oligonucleotide in combination with standard chemotherapeutic agents against various human tumors transplanted into nude mice. Anticancer Drug Des 13: 35–45, 1998

    Google Scholar 

  61. Cotter FE: Antisense oligonucleotides for haematological malignancies. Haematologica 84: 19–22, 1999

    Google Scholar 

  62. Yuen AR, Halsey J, Fisher GA, Holmlund JT, Geary RS, Kwoh TJ, Dorr A, Sikic BI: Phase I study of an antisense oligonucleotide to protein kinase C-alpha (ISIS 3521/CGP 64128A) in patients with cancer. Clin Cancer Res 5: 3357–3363, 1999

    Google Scholar 

  63. Alavi JB, Grossman SA Supko J: Efficacy, toxicity, and pharmacology of an antisense oligonucleotide directed against protein kinase C-alpha (ISIS 3521) delivered as a 21 day continous intravenous infusion in patients with recurrent high grade astrocytomas (HGA). Proc Am Soc Clin Oncol 19: 167, 2000

    Google Scholar 

  64. Yuen A, Advani R, Fisher G: A phase I/II trial of ISIS 3521, an antisense inhibitor of protein kinase C alpha, combined with carboplatin and paclitaxel in patients with non-small cell lung cancer. Am Soc Clin Oncol 19: 459, 2000

    Google Scholar 

  65. Yuen A, Halsey J, Lum B: Phase I/II trial of ISIS 3521, an antisense inhibitor of PKC, with carboplatin and paclitaxel in non-small cell lung cancer. Clin Cancer Res 6(Suppl): 4572, 2000

    Google Scholar 

  66. Koch-Brandt C, Morgans C: Clusterin: A role in cell survival in the face of apoptosis? Prog Mol Subcell Biol 16: 130–149, 1996 (review)

    Google Scholar 

  67. Wilson MR, Easterbrook-Smith SB: Clusterin is a secreted mammalian chaperone. Trends Biochem Sci 25: 95–98, 2000

    Google Scholar 

  68. July LV, Akbari M, Zellweger T, Jones EC, Goldenberg SL, Gleave ME: Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy. Prostate 50(3): 179–188, 2000

    Google Scholar 

  69. Miyake H, Chi KN, Gleave ME: Antisense TRPM-2 oligodeoxynucleotides chemosensitize human androgen-independent PC-3 prostate cancer cells both in vitro and in vivo. Clin Cancer Res 6: 1655–1663, 2000

    Google Scholar 

  70. Zellweger T, Miyake H, July LV, Akbari M, Kiyama S, Gleave ME: Chemosensitization of human renal cell cancer using antisense oligonucleotides targeting the antiapoptotic gene clusterin. Neoplasia 3: 360–367, 2001

    Google Scholar 

  71. Miyake H, Gleave M, Kamidono S, Hara I: Overexpression of clusterin in transitional cell carcinoma of the bladder is related to disease progression and recurrence. Urology 59(1): 150–154, 2000

    Google Scholar 

  72. Miyake H, Hara S, Zellweger T, Kamidono S, Gleave ME, Hara I: Acquisition of resistance to fas-mediated apoptosis by overexpression of clusterin in human renal-cell carcinoma cells. Mol Urol 5(3): 105–111, 2001

    Google Scholar 

  73. Miyake H, Rennie P, Nelson C, Gleave ME: Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene, testosterone-repressed prostate message-2 (TRPM-2), in prostate cancer xenograft models. Cancer Res 60: 2547–2554, 2000

    Google Scholar 

  74. Hara I, Miyake H, Gleave ME, Kamidono S: Introduction of clusterin gene into human renal cell carcinoma cells enhances their resistance to cytotoxic chemotherapy through inhibition of apoptosis both in vitro and in vivo. Jpn J Cancer Res 92(11): 1220–1224, 2001

    Google Scholar 

  75. Miyake H, Hara, I Kamidono S, Gleave ME: Synergistic chemsensitization and inhibition of tumor growth and metastasis by the antisense oligodeoxynucleotide targeting clusterin gene in a human bladder cancer model. Clin Cancer Res 7(12): 4245–4252, 2001

    Google Scholar 

  76. Zellweger T, Miyake H, Monia B, Cooper S, Gleave M: Efficacy of antisense clusterin oligonucleotides is improved in vitro and in vivo by incorporation of 2´-o-(2-methoxy) ethyl chemistry. J Pharmacol Exp Ther 298(3): 934–940, 2001

    Google Scholar 

  77. Gregory CW, Hamil KG, Kim D, Hall SH, Pretlow TG, Mohler JL, French FS: Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen regulated genes. Cancer Res 58: 5718–5724, 1998

    Google Scholar 

  78. Feldman BJ, Feldman D: The development of androgen-independent prostate cancer. Nature Rev 1: 34–45, 2001

    Google Scholar 

  79. Denis L, Murphy GP: Overview of phase III trials on combined androgen treatment in patients with metastatic prostate cancer. Cancer 72: 3888–3895, 1993

    Google Scholar 

  80. Eder IE, Culig Z, Ramoner R, Thurnher M, Putz T, Nessler-Menardi C, Tiefenthaler M, Bartsch G, Klocker H: Inhibition of LncaP prostate cancer cells by means of androgen receptor antisense oligonucleotides. Cancer Gene Ther 7(7): 997–1007, 2000

    Google Scholar 

  81. Jones JI, Clemmons DR: Insulin-like growth factors and their binding proteins: Biological actions. Endocr Rev 16: 3–34, 1995

    Google Scholar 

  82. Nickerson T, Pollak M, Huynh H: Castration-induced apoptosis in rat ventral prostate is associated with increased expression of genes encoding insulin-like growth factor binding proteins 2, 3, 4 and 5. Endocrinology 139: 807–810, 1998

    Google Scholar 

  83. Figueroa JA, De Raad S, Tadlock L, Speights VO, Rinehart JJ: Differential expression of insulin-like growth factor binding proteins in high versus low Gleason score prostate cancer. J Urol 159: 1379–1383, 1998

    Google Scholar 

  84. Miyake H, Pollak M, Nelson C, Gleave ME: Antisense insulin-like growth factor binding protein-5 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the Shionogi tumor model via negative modulation of insulin-like growth factor-I action. Cancer Res 60: 3058–3064, 2000

    Google Scholar 

  85. Kiyama S, Zellweger T, Akbari M, Cox M, Miyake H, Gleave M: Antisense oligonucleotides inhibit castration-induced increases in insulin-like growth factor-binding protein-2 and delay progression to androgen-independence in the human prostate LNCaP tumor model. Eur Urol 39: 94, 2001

    Google Scholar 

  86. Roy N, Deveraux Q, Takahashi R, Salvesen GS, Reed JC: The c-IAP and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16: 6914–6925, 1997

    Google Scholar 

  87. Deveraux Q, Takahashi R, Salvesen GS, Reed JC: X-linked IAP is a direct inhibitor of cell-death proteases. Nature 17: 300–304, 1997

    Google Scholar 

  88. Deveraux Q, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC: Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 18: 5242–5251, 1999

    Google Scholar 

  89. Lacasse EC, Baird S, Korneluk RG, Mackenzie AE: The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17: 3247–3259, 1998

    Google Scholar 

  90. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396: 580–583, 1998

    Google Scholar 

  91. Ambrosini G, Adida C, Altieri DC: A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med 3: 917–921, 1997

    Google Scholar 

  92. Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, Reed JC: IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas, Bax, and anticancer drugs. Cancer Res 58: 5315–5320, 1998

    Google Scholar 

  93. Lu CD, Altieri DC, Tanigawa N: Expression of a novel antiapoptosis gene, survivin, corelated with tumor cell apoptosis and p53 acculmulation in gastric carcinomas. Cancer Res 58: 1808–1812, 1998

    Google Scholar 

  94. Kawasaki H, Altieri DC, Lu CD, Toyoda M, Tenjo T, Tanigawa N: Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal carcinoma. Cancer Res 58: 5071–5074, 1998

    Google Scholar 

  95. Adida C, Berrebi D, Peuchmaur M, Reyes-Mugica M, Altieri DC: Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet 351: 882–883, 1998

    Google Scholar 

  96. Olie RA, Simoes-Wust AP, Baumann B, Leech SH, Fabbro D, Stahel RA, Zangemeister-Wittke U: A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res 60: 2805–2809, 2000

    Google Scholar 

  97. Chen J, Wu W, Tahir SK, Kroeger PE, Rosenberg SH, Cowsert LM, Bennett F, Krajewski S, Krajewska M, Welsh K, Reed JC, Ng SC: Down-regulation of survivin by antisense oligonucleotides increases apoptosis, inhibits cytokinesis, and anchorage-independent growth. Neoplasia 235–241, 2000

  98. Saleh M, Posey J, Pleasani L: A phase II trial of ISIS 2503, an antisense inhibitor of H-ras, as first line therapy for advanced colorectal carcinoma. Proc Am Soc Clin Oncol 19: 320, 2000

    Google Scholar 

  99. Siu LL, Gelmon KA, Moore MJ: A phase I and pharmacokinetik (PK) study of the human DNA methyltransferase (Metase) antisense oligodeoxynucleotide MG98 given as a 21-day continous infusion every 4 weeks. Proc Am Soc Clin Oncol 19: 250, 2000

    Google Scholar 

  100. de Fabritiis P, Petti MC, Montefusco E, De Propris MS, Sala R, Bellucci R, Mancini M, Lisci A, Bonetto F, Geiser T, Calabretta B, Mandelli F: BCR-ABL antisense oligodeoxynucleotide in vitro purging and autologous bone marrow transplantation for patients with chronic myelogenous leukemia in advanced phase. Blood 91: 3156–3162, 1998

    Google Scholar 

  101. Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M: Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA 97: 7871–7876, 2000

    Google Scholar 

  102. Ratajczak MZ, Hijiya N, Catani L, DeRiel K, Luger SM, McGlave P, Gewirtz AM: Acute-and chronic-phase chronic myelogenous leukemia colony-forming units are highly sensitive to the growth inhibitory effects of c-myb antisense oligodeoxynucleotides. Blood 79: 1956–1961, 1992

    Google Scholar 

  103. Tortora G, Bianco R, Damiano V, Fontanini G, De Placido S, Bianco AR, Ciardiello F: Oral antisense that targets protein kinase A cooperates with taxol and inhibits tumor growth, angiogenesis, and growth factor production. Clin Cancer Res 6: 2506–2512, 2000

    Google Scholar 

  104. Stevenson JP, Yao KS, Gallagher M, Friedland D, Mitchell EP, Cassella A, Monia B, Kwoh TJ, Yu R, Holmlund J, Dorr FA, O'Dwyer PJ: Phase I clinical/pharmacokinetic and pharmacodynamic trial of the c-raf-1 antisense oligonucleotide ISIS 5132 (CGP 69846A). J Clin Oncol 17: 2227–2236, 1999

    Google Scholar 

  105. Bishop MR, Iversen PL, Bayever E, Sharp JG, Greiner TC, Copple BL, Ruddon R, Zon G, Spinolo J, Arneson M, Armitage JO, Kessinger A: Phase I trial of an antisense oligonucleotide OL(1)p53 in hematologic malignancies. J Clin Oncol 14: 1320–1326, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleave, M., Miyake, H., Zangemeister-Wittke, U. et al. Antisense Therapy: Current Status in Prostate Cancer and Other Malignancies. Cancer Metastasis Rev 21, 79–92 (2002). https://doi.org/10.1023/A:1020172424152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020172424152

Navigation