Skip to main content
Log in

Chlorine evolution in a centrifugal field

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Intensification of the electrochemical production of chlorine and sodium hydroxide (i.e., the chlor-alkali process) was demonstrated in a centrifugal acceleration field. This intensification was shown by comparing the cell voltages and the anode potentials for a cell operated with and without a centrifugal field applied using the linear sweep voltammetric, galvanostatic and potentiostatic polarizations. Under industrial chlor-alkali electrolysis conditions, a cell voltage reduction of up to 600 mV and an anode potential reduction of up to 360 mV at 600 mA cm−2 were achieved by using a relative acceleration rate of 190 g with an acidic saturated NaCl solution at 80 °C. The relationships between the cell performance and relative acceleration rate, for different anode materials, temperature and NaCl concentration are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Published annually in J. Electrochem. Soc.

  2. D. Pletcher and F.C. Walsh, ‘Industrial Electrochemistry’ (Chapman & Hall, London, 3rd Edition, 1993), Chapter 3.

    Google Scholar 

  3. K. Kinoshita, ‘Electrochemical Oxygen Technology’ (John Wiley & Sons, New York, 1992), pp. 339–348.

    Google Scholar 

  4. D.L. Caldwell, Production of Chlorine, in J.O'M. Bockris, B.E. Conway, E. Yeager and R.E. White (Eds), ‘Comprehensive Treatise on Electrochemistry', Vol. 2 (Plenum, New York, 1981), pp. 105–166.

    Google Scholar 

  5. M.O. Coulter (Ed.), ‘Modern Chlor-Alkali Technology', Vol. 1 (Ellis Horwood, Chichester, 1980).

    Google Scholar 

  6. C. Jackson (Ed.), ‘Modern Chlor-Alkali Technology', Vol. 2 (Ellis Horwood, Chichester, 1983).

    Google Scholar 

  7. K. Wall (Ed.), ‘Modern Chlor-Alkali Technology', Vol. 3 (Ellis Horwood, Chichester, 1986).

    Google Scholar 

  8. N.M. Prout and J.S. Moorhouse (Eds.), ‘Modern Chlor-Alkali Technology ‘, Vol. 4 (Elsevier, London, 1990).

    Google Scholar 

  9. T. Wellington (Ed.), ‘Modern Chlor-Alkali Technology', Vol. 5 (Elsevier, London, 1990).

    Google Scholar 

  10. R. Corry (Ed.), ‘Modern Chlor-Alkali Technology', Vol. 6 (Wiley, Chichester, 1995).

    Google Scholar 

  11. S. Trasatti and W.E. O'Grady, in H. Gerischer and C.W. Tobias (Eds), ‘Advances in Electrochemistry & Electrochemical Engineering', Vol. 12 (J. Wiley & Sons, New York, 1981), pp. 177–261.

    Google Scholar 

  12. R.D. Varjian, AIChE Symp. Ser. 204 77 (1981) 219.

    Google Scholar 

  13. M.M. Silver, AIChE Symp. Ser. 204, 77 (1981) 234.

    Google Scholar 

  14. D.S. Cameron, R.L. Phillips and P.M. Willis, in N.M. Prout and J.S. Moorhouse (Eds), ‘Modern Chlor-Alkali Technology', Vol. 4 (Elsevier, London, 1990), pp. 95–107.

    Google Scholar 

  15. O. de Nora, Chem.-Ing.-Techn. 42 (1970) 222.

    Google Scholar 

  16. C. Ramshaw, Heat Recovery Syst. CHP 13 (1993) 493.

    Google Scholar 

  17. D.R. Gabe and F.C. Walsh, I. Chem. E. Symp. Ser. 116 (1990)219.

    Google Scholar 

  18. H. Cheng, ‘Intensi.ed Electrochemical Processes', PhD thesis, University of Newcastle upon Tyne, Newcastle upon Tyne, UK (1999).

    Google Scholar 

  19. M. Shen and Y. Chen, in N.M. Prout and J.S. Moorhouse (Eds), ‘Modern Chlor-Alkali Technology', Vol. 4 (Elsevier, London, 1990), pp. 149–157.

    Google Scholar 

  20. D. Galizzioli, F. Tantardini and S. Trasatti, J. Appl. Electrochem. 4 (1974) 57.

    Google Scholar 

  21. Y. Katoh, Y. Nishiki and S. Nakamatsu, J. Appl. Electrochem. 24 (1994) 489.

    Google Scholar 

  22. L.D. Burke and J.F. Healy, J. Electroanal. Chem. 101 (1979) 341.

    Google Scholar 

  23. H. Vogt, Electrochim. Acta 29 (1984) 167.

    Google Scholar 

  24. H. Vogt, Electrochim. Acta 29 (1984) 175.

    Google Scholar 

  25. L. Muller, M. Krenz and R. Landsberg, J. Electroanal. Chem. 180 (1984) 453.

    Google Scholar 

  26. L.J.J. Janssen and J.G. Hoogland, Electrochim. Acta 15 (1970) 1013.

    Google Scholar 

  27. H. Vogt, in E. Yeager, J.O'M. Bockris, B.E. Conway and S. Sarangapani (Eds), ‘Comprehensive Treatise on Electrochemistry', Vol. 6 (Plenum, New York, 1983), pp. 445–489.

    Google Scholar 

  28. J.H. Austin, in K. Wall (Ed.), ‘Modern Chlor-Alkali Technology', Vol. 3 (Ellis Horwood, Chichester, 1986), pp. 131–146.

    Google Scholar 

  29. F. Hine, M. Yasuda, T. Noda, T. Yoshida and J. Okuda, J. Electrochem. Soc. 126 (1979) 1439.

    Google Scholar 

  30. E.A. Kalonovskii, R.U. Bondar and N.N. Meshkova, Elektrokhimiya 8 (1972) 1468.

    Google Scholar 

  31. A.T. Kuhn and C.J. Mortimer, J. Appl. Electrochem. 2 (1972) 283.

    Google Scholar 

  32. H. Cheng, K. Scott and C. Ramshaw, submitted to Chem. Eng. Sci.

  33. A.J. Bard and L.R. Faulkner, ‘Electrochemical Methods’ (J. Wiley & Sons, New York, 1980), p. 571.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H., Scott, K. & Ramshaw, C. Chlorine evolution in a centrifugal field. Journal of Applied Electrochemistry 32, 831–838 (2002). https://doi.org/10.1023/A:1020170627227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020170627227

Navigation