Advertisement

Genetica

, Volume 115, Issue 2, pp 189–194 | Cite as

Chromosome Analysis and FISH Mapping of Ribosomal DNA (rDNA), Telomeric (TTAGGG)n and (GATA)n Repeats in the Leech Haemopis Sanguisuga (L.) (Annelida: Hirudinea)

  • R. Vitturi
  • A. Libertini
  • F. Armetta
  • L. Sparacino
  • M.S. Colomba
Article

Abstract

In the present paper the chromosome complement (n = 13; 2n = 26) of the common leech Haemopis sanguisuga (L.) (Annelida: Hirudinea: Hirudinidae) was analyzed using banding techniques and fluorescent in situ hybridization (FISH) with three repetitive DNA probes [ribosomal DNA (rDNA), (TTAGGG) n and (GATA) n ]. FISH with the rDNA probe consistently mapped major ribosomal clusters (18S–28S rDNA) in the pericentromeric region of one large metacentric chromosome pair; this region, which consisted of heterochromatin rich in GC base pairs, was preferentially stained by silver nitrate (Ag-NOR). The (TTAGGG) n telomeric probe was hybridized with the termini of nearly all chromosomes, whereas the (GATA) n probe did not label any chromosome areas.

chromosomes FISH Haemopis sanguisuga Hirudinea repetitive DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amemiya, C.T. &; J.R. Gold, 1990. Cytogenetic studies in North American minnows (Cyprinidae). XVII. Chromosomal NOR phenotypes of 12 species, with comments on cytosystematic relationship among 50 species. Hereditas 112: 231–247.Google Scholar
  2. Apakupakul, K., M.E. Siddall &; E.M. Burreson, 1999. Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. Mol. Phylogenet. Evol. 12: 350–359.Google Scholar
  3. Caputo, V., N. Machella, P. Nisi-Cerioni &; E. Olmo, 2001. Cytogenetics of nine species of Mediterranean blennies and additional evidence for an unusual multiple sex-chromosome system in Parablennius tentacularis (Perciformes, Blennidae). Chrom. Res. 9: 3–12.Google Scholar
  4. Christensen, B., 1980. Animal Cytogenetics, Vol. 2, edited by B. John. Borntraeger, Stuttgart.Google Scholar
  5. Di, S. &; J.F. Knowles, 1992. Chromosomes of the polychaete Ophryotrocha diadema. Ophelia 36: 195–201.Google Scholar
  6. Giles, V., G. Thode &; M.C. Alvarez, 1985. A new Robertsonian fusions in the multiple chromosome polymorphism of a Mediterranean population of Gobius pagamellus (Gobiidae, Perciformes). Heredity 55: 255–260.Google Scholar
  7. Howell, W.M. &; D.A. Black, 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experentia 36: 1014–1015.Google Scholar
  8. Jha, A.N., I. Dominquez, A.S. Balajee, T.H. Hutchinson, D.R. Dixon &; A.T. Natarajan, 1995. Localization of a vertebrate telomeric sequence in the chromosomes of two marine worms (phylum Annelida: class Polychaeta). Chrom. Res. 3: 507–508.Google Scholar
  9. Jido, J.W., R.A. Wells, A. Baldini &; S.T. Reeders, 1991. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucl. Ac. Res. 19: 47–80.Google Scholar
  10. Levan, A., K. Fredga &; A.A. Sandberg, 1964. Nomenclature for centromeric position of chromosomes. Hereditas 52: 201–220.Google Scholar
  11. Liu, W.S. &; K. Fredga, 1999. Telomeric (TTAGGG)n sequences are associated with nucleolus organizer regions (NORs) in the wood lemming. Chrom. Res. 7: 235–240.Google Scholar
  12. Martin, P., 2001. On the origin of the Hirudinea and the demise of the Oligochaeta. Proc. R. Soc. London, Ser. B 268: 1089–1098.Google Scholar
  13. Meyne, J., R.J. Baker, H.H. Hobart, T.C. Hsu, A.R. Oliver, O.G. Ward, J.E. Wiley, D.H. Wurster-Hill, T.L. Yates &; R.K. Moyzis, 1990. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequences in vertebrate chromosomes. Chromosoma 99: 3–10.Google Scholar
  14. Müller, F., C. Wicky, A. Spicher &; H. Tobler, 1991. New telomere formation after developmentally regulated chromosomal breakage during the process of chromatin diminution in Ascaris lumbricoides. Cell 67: 815–822.Google Scholar
  15. Nomoto, Y., M. Hirai &; R. Ueshima, 2001. Cloning of molluscan telomere DNA with (TTAGGG)n repeat and its chromosomal location in the freshwater snail Biwamelania habei. Zool. Sci. 18: 417–422.Google Scholar
  16. Phillips, R.B. &; P.E. Ihssen, 1985. Chromosome banding in salmonid fish: nucleolar organizer in Salmo and Salvelinus. Can. J. Genet. Cytol. 27: 433–440.Google Scholar
  17. Phillips, R.B. &; K.M. Reed, 1996. Application of fluorescence in situ hybridization (FISH) technique to fish genetics: a review. Aquaculture 140: 197–216.Google Scholar
  18. Sahara, K., F. Marec &; W. Traut, 1999. TTAGG telomere repeats in chromosomes of some insects and other arthropods. Chrom. Res. 7: 449–460.Google Scholar
  19. Schmid, M., T. Haaf, B. Geile &; S. Sims, 1983. Chromosome banding in Amphibia. VIII. An unusual XY/XX sex chromosome system in Gostrotheca riobambae (Anura, Hylidae). Cytogenet. Cell Genet. 69: 18–26.Google Scholar
  20. Schmid, M., W. Feichtinger, R. Weimer, C. Mais, F. Bolaños &; P. León, 1995. Chromosome banding in Amphibia. XXI. Inversion polymorphism and multiple nucleolus organizer regions in Agalychnis callydrias (Anura, Hylidae). Cytogenet. Cell Genet. 69: 18–16.Google Scholar
  21. Sella, G., R. Vitturi, L. Ramella &; M.S. Colomba, 1995. Chromosomal nucleolar organizer regions (NOR) phenotypes in nine species of the genus Ophryotrocha (Polichaeta: Dorvilleidae). Mar. Biol. 124: 425–433.Google Scholar
  22. Siddall, M.E. &; E.M. Burreson, 1998. Phylogeny of leeches (Hirudinea) based on mitochondrial cytochrome c oxidase subunit I. Mol. Phylogenet. Evol. 9: 156–162.Google Scholar
  23. Sumner, A.T., 1972. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75: 304–306.Google Scholar
  24. Thiriot-Quievreux, C. &; A. Insua, 1992. Nucleolar organiser region variation in the chromosomes of three oyster species. J. Exp.Mar. Biol. Ecol. 157: 33–40.Google Scholar
  25. Vitturi, R., D. Colombera, E. Catalano &; F.P. Amico, 1991. Karyotype analysis, nucleolus organizer regions and C-banding pattern of Eisenia foetida (Oligochaeta, Lumbricidae). Genetica 83: 159–165.Google Scholar
  26. Vitturi, R., L. Ramella, M.S. Colomba, V. Caputo &; G. Sella, 2000a. NOR regions of polichaete worms of the genus Ophryotrocha studied by chromosome banding techniques and FISH. J. Hered. 91: 18–23.Google Scholar
  27. Vitturi, R., M.S. Colomba, A. Pirrone &; A. Libertini, 2000b. Physical mapping of rDNA genes, (TTAGGG)n telomeric sequence and other karyological features in two earthworms of the family Lumbricidae (Annelida: Oligochaeta). Heredity 85: 203–207.Google Scholar
  28. Vitturi, R., M.S. Colomba, P. Gianguzza &; A.M. Pirrone, 2000c. Chromosomal location of ribosomal DNA (rDNA), (GATA)n and (TTAGGG)n telomeric repeats in the neogastropod Fasciolaria lignaria (Mollusca: Prosobranchia). Genetica 108: 253–257.Google Scholar
  29. Vitturi, R., P. Gianguzza, M.S. Colomba &; S. Riggio, 2000d. Cytogenetic characterization of Brachidontes pharaonis (Mollusca: Bivalvia): karyotype, banding and fluorescent in situ hybridization (FISH). Ophelia 52: 213–220.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • R. Vitturi
    • 1
  • A. Libertini
    • 2
  • F. Armetta
    • 1
  • L. Sparacino
    • 1
  • M.S. Colomba
    • 3
  1. 1.Dipartimento di Biologia AnimaleUniversità di PalermoPalermoItaly (Phone
  2. 2.CNRIstituto di Biologia del MareVeneziaItaly
  3. 3.Facoltà di Scienze AmbientaliUniversità di Urbino, Località CrocicchiaUrbino (PU)Italy

Personalised recommendations