Skip to main content
Log in

General Shear-Thinning Dynamics of Confined Fluids

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The shear properties for a number of thin fluid films under high pressure were investigated as a function of sliding velocity (shear rate) using the surface forces apparatus. It was found that the relationship between the effective viscosity ηeff and shear rate γ in the shear-thinning regime could be expressed by a simple equation, log10ηeff=C-nlog10γ, where C≈4.7±0.2 and n≈0.9±0.1. This equation can be applied to a variety of fluid systems from simple liquids to polymer melts, which transition to glasslike phases in confined geometries. Since the effect of confinement on the “slowing down” of molecular motions is equivalent to that of decreasing temperature, this universally can be explained using conventional glass-transition theories for bulk fluids. Assuming the confined fluid to be in a state where dynamics are dominated by excluded volume effects, its ηeff should correspond to that of the bulk at or near the glass-transition temperature. Thus, characteristic relaxation times in the system should correlate with the time scales of the primary relaxation processes associated with submolecular rearrangements, which are an essential feature of the glass transition and not very different for various fluid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Granick, Science 253 (1991) 1374.

    Google Scholar 

  2. J.N. Israelachvili, A.M. Homola and P.M. McGuiggan, Science 240 (1988) 189.

    Google Scholar 

  3. J. Israelachvili and A.D. Berman, in: CRC Handbook of Micro/Nanotribology, 2nd ed. (CRC Press, Boca Raton, FL, 1999) ch.9.

    Google Scholar 

  4. H.-W. Hu, G.A. Carson and S. Granick, Phys. Rev. Lett. 66 (1991) 2758.

    Google Scholar 

  5. H. Yoshizawa and J. Israelachvili, J. Phys. Chem. 97 (1993) 11300.

    Google Scholar 

  6. M.L. Gee, P.M. McGuiggan, J.N. Israelachvili and A.M. Homola, J. Chem. Phys. 93 (1990) 1895.

    Google Scholar 

  7. G. Luengo, F.J. Schmitt, R. Hill and J. Israelachvili, Macromolecules 30 (1997) 2482.

    Google Scholar 

  8. S. Yamada, G. Nakamura and T. Amiya, Langmuir 17 (2001) 1693.

    Google Scholar 

  9. P.A. Thompson, G.S. Grest and M.O. Robbins, Phys. Rev. Lett. 68 (1992) 3448.

    Google Scholar 

  10. P.A. Thompson, M.O. Robbins and G.S. Grest, Isr. J. Chem. 35 (1995) 93.

    Google Scholar 

  11. Y. Rabin and I. Hersht, Physica A 200 (1993) 708.

    Google Scholar 

  12. M.O. Robbins and A.R.C. Baljon, in: Microstructure and Microbiology of Polymer Surfaces (American Chemical Society, Washington, DC, 2000) ch. 6.

    Google Scholar 

  13. M.O. Robbins and M.H. Muser, in: Modern Tribology Handbook, Volume One (CRC Press, Boca Raton, FL, 2001) ch. 20.

    Google Scholar 

  14. S. Yamada and J. Israelachvili, J. Phys. Chem. B 102 (1998) 234.

    Google Scholar 

  15. J. Peachey, J.V. Alsten and S. Granick, Rev. Sci. Instrum. 62 (1991) 463.

    Google Scholar 

  16. Polymer Handbook, 4th ed., eds. J. Brandrup, E.H. Immergut and E.A. Grulke (John Wiley & Sons, New York, 1999).

    Google Scholar 

  17. J.M.H.M. Scheutjens and G.J. Fleer, Macromolecules 18 (1985) 1882.

    Google Scholar 

  18. R.G. Horn and J.N. Israelachvili, Macromolecules 21 (1988) 2836.

    Google Scholar 

  19. S. Granick and H.-W. Hu, Langmuir 10 (1994) 3857; S. Granick, H.-W. Hu and G.A. Carson, Langmuir 10 (1994) 3867; J.Peanasky, L.L. Cai, S.Granick and C.R. Kessel, Langmuir 10 (1994) 3874.

    Google Scholar 

  20. A. Jabbarzadeh, J.D. Atkinson and R.I. Tanner, J. Chem. Phys. 110 (1999) 2612.

    Google Scholar 

  21. A.L. Demirel and S. Granick, Phys. Rev. Lett. 77 (1996) 2261; A.L. Demirel and S. Granick, J. Chem. Phys. 115 (2001) 1498.

    Google Scholar 

  22. S. Granick, Phys. Today 52 (1999) 26.

    Google Scholar 

  23. C. Drummond and J. Israelachvili, Macromolecules 33 (2000) 4910.

    Google Scholar 

  24. C.A. Angel, Science 267 (1995) 1924; P.G. Debenedetti and F.H. Stillinger, Nature 410 (2001) 259.

    Google Scholar 

  25. J.D. Ferry, in: Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).

    Google Scholar 

  26. B. Jerome and J. Commandeur, Nature 386 (1997) 589.

    Google Scholar 

  27. C. Bennemann, C. Donati, J. Baschnagel and S.C. Glotzer, Nature 399 (1999) 246.

    Google Scholar 

  28. G. Luengo, J. Israelachvili and S. Granick, Wear 200 (1996) 328.

    Google Scholar 

  29. S. Yamada, manuscript in preparation.

  30. A. Dhinojwala, S.C. Base and S. Granick, Tribol. Lett. 9 (2000) 55.

    Google Scholar 

  31. S. Yamada, G. Nakamura, Y. Hanada and T. Amiya, submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, S. General Shear-Thinning Dynamics of Confined Fluids. Tribology Letters 13, 167–171 (2002). https://doi.org/10.1023/A:1020151824274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020151824274

Navigation