Skip to main content
Log in

Currently Available Methods of Analysis of Ecological Environment

  • Published:
Chemical and Petroleum Engineering Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. A. Ganeev, S. E. Sholupov, É. L. Al'tman, and Yu. I. Turkin, “A few applications of Zeeman effect to atomic absorption analysis,” Zh. Prikl. Spektrosk., 30, 707–710 (1979).

    Google Scholar 

  2. V. S. Vergizova, B. N. Kozlov, M. V. Voronov, and S. E. Sholupov, “Time-of-flight mass spectrometry with pulsed glow discharge ionization in thin-walled metallic hollow cathode,” in: Proc. Winter Conf. Plasma Spectrochem., France (1999), pp. 338–340.

  3. A. A. Ganeev, Yu. I. Turkin, N. R. Mash'yanov, and G. B. Sveshnikov, “Possibility of direct determination of metal atoms in atmosphere,” Probl. Sovremen. Anal. Khim., No. 5, 3–13, Leningrad (1986).

  4. A. A. Ganeev (Ganejev) and S. E. Sholupov, “New Zeeman atomic absorption approach for mercury isotope analysis,” Spectrochim. Acta, 47B, 1325–38 (1992).

    Google Scholar 

  5. A. A. Ganeev, N. R. Mash'yanov, S. E. Sholupov, and G. B. Sveshnikov, “Possibility of mapping of active tectonic structures from gas aureoles of mercury above sea surface,” Dokl. Akad. Nauk SSSR, 275, 1162–64 (1984).

    Google Scholar 

  6. A. A. Ganeev, S. E. Sholupov, V. V. Ryzhkov, et al., “Determination of organomercury compounds in natural gas using photolysis and pyrolysis,” Vestn. SpbGU (J. St. Petersburg State Univ.)121–128 (1996).

  7. Russian Patent Application No. 95116952/25, dated 10.3.95, Method of Direct Determination of Mercury in Bioproducts, Oils, and Gas Condensate

  8. A. A. Ganeev, Yu. T. Il'in, N. R. Mash'yanov, et al., “Gas aureoles of mercury above sea surface and prospects of their use for geochemical prospecting in present-day conditions,” All-Union Conf. on Prospecting Geochemistry[in Russian], 7, 41–42, IMGRÉ (Institute of Mineralogy, Geochemistry, and Crystallochemistry of Rare Elements), Moscow (1988).

    Google Scholar 

  9. J. Bak and A. Larsen, “Quantitative gas analysis with FT-IR: A method for CO calibration using partial least-squares with linearized data,” Appl. Spectroscopy, 49, No. 4, 437–443 (1995).

    Google Scholar 

  10. M. A. Ruyken, J. A. Visser, and A. K. Smilde, “On-line detection and identification of organic gases using FT-IR spectroscopy,” Anal. Chem., 67, No. 13, 2170–79 (1995).

    Google Scholar 

  11. I. Ahonen, H. Riipinen, and A. Roos, “A portable Fourier transform infrared spectrometer for use as a gas analyzer in industrial hygiene,” The Analyst, 121, 1253–55 (1996).

    Google Scholar 

  12. B. X. Mayer, “How to increase precision of capillary electrophoresis,” Review J. Chromatogr., A 907, 21–37 (2001).

    Google Scholar 

  13. M. J. Baars and G. Patonay, “Ultrasensitive detection of closely related angiotensin peptides using capillary electrophoresis with near-infrared laser-induced fluorescence detection,” Anal. Chem., 71, 667–71 (1999). 343

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loginova, S.V. Currently Available Methods of Analysis of Ecological Environment. Chemical and Petroleum Engineering 38, 337–343 (2002). https://doi.org/10.1023/A:1020150415244

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020150415244

Keywords

Navigation