Skip to main content
Log in

Monitoring hydrogen absorption in Pd electrodes by means of electric and electrochemical signals

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A reliable, nondestructive methodology to determine the actual hydrogen content in hydrogen storage electrodes has been developed. This methodology is based on relative electric resistance measurements, backed up by measurements of electrode potential, since both quantities are or are derived from electric signals, easy to handle and use in automatic data acquisition lines. The setup and procedure for relative resistance measurements, both under electrolysis and at open circuit conditions, will be described and discussed in terms of possible error sources and their relevant uncertainties, on the basis of the results obtained for the Pd–H system, chosen as model system. The use of electric and electrochemical signals to determine the current–potential distribution along the electrode as a function of the cell geometry and the working conditions will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.A. Petrii, I.V. Rovrigina and S.YA. Vasina, Mater. Chem.Phys. 22 (1989) 51.

    Google Scholar 

  2. K. Petrov, A.A. Rostami, A. Visintin and S. Srinivasan, J. Electrochem. Soc. 141 (1994) 1747.

    Google Scholar 

  3. P.H.L. Notten and P. Hokkeling, J. Electrochem. Soc. 138 (1991) 1877.

    Google Scholar 

  4. M. Matsuoka, T. Kohno and C. Iwakura, Electrochim. Acta 38 (1993) 787.

    Google Scholar 

  5. G.D. Adzic, J.R. Johnson, J.J. Reilly and H.S. Lim, J. Electrochem.Soc. 142 (1995) 3424.

    Google Scholar 

  6. M.E. Malinowski, and K.D. Stewart, Sandia National Laboratory Technical Report SAND97-8289, Sandia National Laboratories, Albuquerque, NM and Livermore, CA (1997).

    Google Scholar 

  7. R. Schulz, J. Huot, G. Liang, S. Boily, G. Lalande, M.C. Denis and J.P. Dodelet, Mater. Sci. Eng. A A276 (1999) 240.

    Google Scholar 

  8. M-S. Wu, Y-H Hung, Y-Y. Wang and C-C. Wan, J. Electrochem.Soc. 147 (2000) 930.

    Google Scholar 

  9. T. Sakai, I. Uehara, and H. Ishikawa, J. Alloys Compd. 293–295 (1999) 762.

    Google Scholar 

  10. J.J. Reilly, G.D. Adzic, J.R. Johnson, T. Vogt, S. Mukerjee and J. McBreen, J. Alloys Compd. 293–295 (1999) 569.

    Google Scholar 

  11. P.L. Cabot, E. Guezala, J.C. Calpe, M.T. Garcia and J. Casado, J. Electrochem. Soc. 147 (2000) 43.

    Google Scholar 

  12. P.L. Cabot, M. Centelles, L. Segarra and J. Casado, J. Electrochem.Soc. 144 (1997) 3749.

    Google Scholar 

  13. P.L. Cabot, M. Centelles, L. Segarra and J. Casado, J. Electrochem.Soc. 145 (1998) 1502.

    Google Scholar 

  14. R.C. Hughes, W.K. Schubert and R.G. Buss, J. Electrochem. Soc. 142 (1995) 249.

    Google Scholar 

  15. Boonsong Sutapun, Massood Tabib-Azar and A. Kazemi, Sens.Actuators B, chem. 60 (1999) 27.

    Google Scholar 

  16. Chinhua Wang, A. Mandelis and J.A. Garcia, Sens. Actuators B, Chem. 60 (1999) 228.

    Google Scholar 

  17. A. Sieverts and H. Hagen, Z. Phys. Chemie A 174 (1935) 247.

    Google Scholar 

  18. A. Sieverts and W. Danz, Z. Phys. Chemie B 38 (1937) 61.

    Google Scholar 

  19. J.P. Hoare, S. Schuldiner, J. Phys. Chem. 61 (1957) 339.

    Google Scholar 

  20. T.B. Flanagan and F.A Lewis, Z. Physik. Chem. Neue Folge 27 (1961) 104.

    Google Scholar 

  21. J.C. Barton and F.A. Lewis, Trans. Faraday Soc. 58 (1962) 103.

    Google Scholar 

  22. J.C. Barton, A.S. Green and F.A. Lewis, Trans. Faraday Soc. 62 (1966) 960.

    Google Scholar 

  23. A.W. Carson, F.A. Lewis and W.H. Schurter, Trans. Faraday Soc. 63 (1967) 1447.

    Google Scholar 

  24. B. Baranowski and R. Wisniewski, Phys. Stat. Sol. 35 (1969)593.

    Google Scholar 

  25. R.J. Smith and D.A. Otterson, J. Phys. Chem. Solids 31 (1970) 187.

    Google Scholar 

  26. F.A. Lewis, K. Kandasamy, R-A. McNichol and X.Q. Tong, Int.J. Hydrogen Energy 20 (1995) 369.

    Google Scholar 

  27. K. Yamakawa, J. Phys., Condens. Matter 11 (1999) 8681.

    Google Scholar 

  28. E.S. Kooij, A.T.M. van Gogh and R. Griessen, J. Electrochem.Soc. 146 (1999) 2990.

    Google Scholar 

  29. S.Y. Qian, B.E. Conway and G. Jerkiewicz, Int. J. Hydrogen Energy 25 (2000) 539.

    Google Scholar 

  30. D.J.G. Ives and J.G. Janz, 'Reference Electrodes' (Academic Press, New York, 1961, p. 111–116.

    Google Scholar 

  31. D.J.G. Ives and J.G. Janz, op. cit. [30], pp. 270–321.

    Google Scholar 

  32. W.W. Harvey, J. Electrochem. Soc. 109 (1962) 638.

    Google Scholar 

  33. R.I. Tucceri and D. Posadas, J. Electrochem. Soc. 128 (1981) 1478.

    Google Scholar 

  34. G. Busca, Thesis, University of Milan Italy (1996).

  35. Kirk-Othmer, 'Encyclopedia of Chemical Technology', Vol. 10 (J. Wiley & Son, New York, 1966, 2nd edn), p. 682.

    Google Scholar 

  36. H.C. Jamieson and F.D. Manchester, J. Phys. F, Met. Phys. 2 (1972) 323.

    Google Scholar 

  37. B. Stritzker and W. Buckel, Z. Physik. 257 (1972) 1.

    Google Scholar 

  38. E. Wicke, H. Brodowsky, with cooperation by H. Züchner, in G. Alefeld and J. Volkl (Eds), 'Topics in Applied Physics', Vol. 28 (Springer-Verlag, Berlin, 1978), p. 73.

    Google Scholar 

  39. N. Ibl, in E. Yeager, J.O'M. Bockris, B.E. Conway and S. Sarangapani (Eds), 'Comprehensive Treatise of Electrochemistry' Vol. 6 (Plenum Press, New York, 1983), pp. 238–315.

    Google Scholar 

  40. N. Ibl, in E. Yeager, J.O'M. Bockris, B.E. Conway and S. Sarangapani (Eds), ‘ComoprehensiveTreatise of Electrochemistry’ Vol. 6 (Plenum Press, New York, 1983) op cit. [39], p. 243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vertova, A., Rondinini, S. & Busca, G. Monitoring hydrogen absorption in Pd electrodes by means of electric and electrochemical signals. Journal of Applied Electrochemistry 32, 661–670 (2002). https://doi.org/10.1023/A:1020149306968

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020149306968

Navigation