Skip to main content
Log in

Unsteady Viscous Flows about Bodies: Vorticity Release and Forces

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The force (drag and lift) exerted on a body moving in a viscous fluid is expressed via the ‘free’ and ‘bound’ vorticity moments, and the role of vortex shedding is discussed. The formulation encompasses classical, inviscid flows, and leads to efficient computational methods. Numerical results for a few prototype flows are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassanini, P., Casciola, C., Lancia, M.R. and Piva, R., ‘A boundary integral formulation for the kinetic field in aerodynamics. I: Mathematical analysis’, Eur. J. Mech. B/Fluids 10, (1991) 605–627.

    Google Scholar 

  2. Bassanini, P., Casciola, C., Lancia, M.R. and Piva, R., ‘Edge singularities and Kutta condition in 3D aerodynamics’, Meccanica 3 (1999) 199–229.

    Google Scholar 

  3. Batchelor, G.K., An Introduction to Fluid Dynamics, Cambridge Univertsity Press, New York, 1991.

    Google Scholar 

  4. Berker, R., ‘Integration des equations du mouvement d’ un fluide visqueux incompressible’, In: Handbook der Physik Bd., VIII/2, Springer-Verlag, Berlin, 1963, pp. 1–384.

    Google Scholar 

  5. Casciola, C., Piva, R. and Bassanini, P., ‘Vorticity generation on a flat surface in 3D flows’, J. Comput. Phys. 129 (1996) 345–356.

    Google Scholar 

  6. Friedrichs, K.O., Special Topics in Fluid Dynamics, Nelson, London, 1966.

    Google Scholar 

  7. Graziani, G., Ranucci, M., Riccardi, G. and Piva, R., ‘Viscous versus inviscid interaction of a vorticity structure with a circular cylinder’, Meccanica 29 (1994) 465–478.

    Google Scholar 

  8. Graziani, G., Ranucci, M. and Piva, R., ‘From a boundary integral formulation to a vortex method for viscous flows’, Comput. Mech. 15(4) (1995) 301–314.

    Google Scholar 

  9. Lighthill, J., An Informal Introduction to Theoretical Fluid Dynamics, Oxford University Press, Oxford, 1986

    Google Scholar 

  10. Marchioro, C. and Pulvirenti, M., Mathematical Theory of Incompressible Nonviscous Fluids, SpringerVerlag, New York, 1994.

    Google Scholar 

  11. Milne-Thomson, L.M., Theoretical Hydrodynamics, MacMillan, London, 1968.

    Google Scholar 

  12. Noca, F., Shiels, D. and Jeon, D., ‘A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives’, J. Fluids Struct. 13 (1999) 551–578.

    Google Scholar 

  13. Phillips, O.M., ‘The intensity of Aeolian tones’, J. Fluid Mech. 1 (1957) 607–624.

    Google Scholar 

  14. Saffman, P.G., Vortex Dynamics, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  15. Taylor, G.I., ‘The energy of a body moving in an infinite fluid, with an application to airships’, Proc. Roy.Soc. London A 120 (1928) 260–283.

    Google Scholar 

  16. Wu, J.C., ‘Theory for aerodynamic force and moment in viscous flows’, AIAA J. 4(19) (1981) 432–441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graziani, G., Bassanini, P. Unsteady Viscous Flows about Bodies: Vorticity Release and Forces. Meccanica 37, 283–303 (2002). https://doi.org/10.1023/A:1020139607779

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020139607779

Navigation