Skip to main content
Log in

The Effects of pH and Intraliposomal Buffer Strength on the Rate of Liposome Content Release and Intracellular Drug Delivery

  • Published:
Bioscience Reports

Abstract

Targeted liposomal drug formulations may enter cells by receptor-mediated endocytosis and then traffick by membrane flow into acidic intracellular compartments. In order to understand the impact of these intracellular pH changes on liposomal drug unloading, the effect of pH on the release from folate-targeted liposomes of three model compounds with distinct pH dependencies was examined. 5(6)-carboxyfluorescein, which titrates from its anionic to uncharged form following internalization by KB cells, displays strong endocytosis-dependent release, since only its uncharged (endosomal) form is membrane permeable. Endocytosis-triggered unloading of drugs of this sort is enhanced by encapsulating the drug in a weak buffer at neutral pH, so that acidification of the intraliposomal compartment following cellular uptake can occur rapidly. Sulforhodamine B, in contrast, retains both anionic and cationic charges at endosomal pH (~pH 5), and consequently, escapes the endosomes only very slowly. Doxorubicin, which is commonly loaded into liposomes in its membrane-impermeable (cationic) form using an acidic buffer, still displays endocytosis-triggered unloading, since sufficient uncharged doxorubicin remains at endosomal pHs to allow rapid re-equilibration of the drug according to the new proton gradient across the membrane. In this case, when the extraliposomal [H+] increases 250-fold from 4 × 10−8 M (pH 7.4, outside the cell) to 10−5 M (pH 5, inside the endosome), the ratio of doxorubicin inside to outside the liposome must decrease by a factor of 250. Therefore, the collapse of the transliposomal pH gradient indirectly drives an efflux of the drug molecule from the liposome. Since a change in intraliposomal pH is not required to unload drugs of this type, the intraliposomal compartment can be buffered strongly at acidic pH to prevent premature release of the drug outside the cell. In summary, pH triggered release of liposome-encapsulated drugs can be achieved both with drugs that increase as well as decrease their membrane permeabilities upon acidification, as long as the intraliposomal buffer strength and pH is rationally selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lichtenberg, D. (1988) Methods Biochem. Anal. 33:337–462.

    PubMed  Google Scholar 

  2. Litzinger, D. C. and Huang, L. (1992) Biochim. Biophys. Acta 1113:201–227.

    PubMed  Google Scholar 

  3. Betageri, G. V. (1993) Technomic Publ. Lancaster, Pennsylvania.

  4. Blume, G., Cevc, G., Crommelin, M. D. J. A., Bakker-Woudenberg, I. A. J. M., Kluft, C., and Storm, G. (1993) Biochim. Biophys. Acta 1149:180–184.

    PubMed  Google Scholar 

  5. Torchilin, V. P., Klibanov, A. L., Huang, L., O'Donnell, S., Nossiff, N. D., and Khaw, B. A. (1992) FASEB J. 6:2716–2719.

    PubMed  Google Scholar 

  6. Papahadjopoulos, D. et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88:11460–11464.

    PubMed  Google Scholar 

  7. Mori, A., Klibanov, A. L., Torchilin, V. P., and Huang, L. (1991) FEBS Lett. 284:263–266.

    PubMed  Google Scholar 

  8. Woodle, M. C. and Lasic, D. D. (1992) Biochim. Biophys. Acta 1113:171–199.

    PubMed  Google Scholar 

  9. Moghimi, S. M. and Patel, H. M. (1992) Biochim. Biophys. Acta 1135:269–274.

    PubMed  Google Scholar 

  10. Mayer, L. D. et al. (1989) Cancer Res. 49:5922–5930.

    PubMed  Google Scholar 

  11. Mayer, L. D., Bally, M. B., Loughrey, H., Masin, D., and Cullis, P. R. (1990) Cancer Res. 50:575–579.

    PubMed  Google Scholar 

  12. Felgner, P. L. and Ringold, G. M. (1989) Nature 337:387–388.

    PubMed  Google Scholar 

  13. Gao, X. and Huang, L. (1991) Biochem. Biophys. Res. Commun. 179:280–285.

    PubMed  Google Scholar 

  14. Lee, R. J. and Low, P. S. (1994). J. Biol. Chem. 269:3198–3204.

    PubMed  Google Scholar 

  15. Leserman, L. D., Weinstein, J. N., Blumenthal, R., and Terry, W. D. (1980) Proc. Natl. Acad. Sci. U.S.A. 77:4089–4093.

    PubMed  Google Scholar 

  16. Lundberg, B., Hong, K., and Papahadjopoulos, D. (1993) Biochim. Biophys. Acta 1149:305–312.

    PubMed  Google Scholar 

  17. Mori, A., Kennel, S. J., and Huang, L. (1993) Pharm. Res. 10:507–514.

    PubMed  Google Scholar 

  18. Weinstein, J. N., Yoshikami, S., Henkart, P., Blumenthal, R., and Hagins, W. A. (1977) Science 195:489–492.

    PubMed  Google Scholar 

  19. Szoka, F. C., Jacobson, K., and Papahadjopoulos, D. (1979) Biochim. Biophys. Acta 551:295–303.

    PubMed  Google Scholar 

  20. Leserman, L. D., Barbet, J., Kourilsky, F. and Weinstein, J. N. (1980) Nature 288:602–604.

    PubMed  Google Scholar 

  21. Vogel, K., Wang, S., Lee, R. J., Low, P. S., and Chmielewski, J. A. (1995). J. Am. Chem. Soc. 118:1581.

    Google Scholar 

  22. Connor, J., Yatvin, M. B., and Huang, L. (1984) Proc. Natl. Acad. Sci. U.S.A. 81:1715–1718.

    PubMed  Google Scholar 

  23. Chu, C.-J., Dijkstra, J., Lai, M. Z., Hong, K., and Szoka, F. C. (1990) Pharm. Res. 7:824–834.

    Article  PubMed  Google Scholar 

  24. Jizomoto, H., Kanaoka, E., and Hirano, K. (1994) Biochim. Biophys. Acta 1213:343–348.

    PubMed  Google Scholar 

  25. Lee, R. J. and Low, P. S. (1995) Biochim. Biophys. Acta 1233:134–144.

    PubMed  Google Scholar 

  26. Wang, S., Lee, R. J., Cauchon, G., Gorenstein, D. G., and Low, P. S. (1995) Proc. Natl. Acad. Sci. U.S.A. 92:3318–3322.

    PubMed  Google Scholar 

  27. Lee, R. J. and Huang, L. (1996) J. Biol. Chem. 271:8481–8487.

    PubMed  Google Scholar 

  28. Rettig, W., Garin-Chesa, P., Beresford, H., Oettgen, H., Melamed, M., and Old, L. (1988) Proc. Natl. Acad. Sci. U.S.A. 85:3110–3114.

    PubMed  Google Scholar 

  29. Campbell, I. G., Jones, T. A., Foulkes, W. D., and Trowsdale, J. (1991) Cancer Res. 51:5329–5338.

    PubMed  Google Scholar 

  30. Garin-Chesa, P., Campbell, I., Saigo, P., Lewis, J., Old, L., and Rettig, W. (1993) Am. J. Pathol. 142:557–567.

    PubMed  Google Scholar 

  31. Ross, J. F., Chaudhuri, P. K., and Ratnam, M. (1994) Cancer 73:2432–2443.

    PubMed  Google Scholar 

  32. Rothberg, K. G., Ying, Y. S., Kolhouse, J. F., Kamen, B. A., and Anderson, R. G. W. (1990) J. Cell Biol. 110:637–649.

    PubMed  Google Scholar 

  33. Lee, R. J., Wang, S., and Low, P. S. (1996) Biochim. Biophys. Acta 1312:237–242.

    PubMed  Google Scholar 

  34. Antony, A. C., Kane, M. A., Portillo, R. M., Elwood, P. C., and Kolhouse, J. F. (1985) J. Biol. Chem. 260:14911–14917.

    PubMed  Google Scholar 

  35. Haugland, R. P. (1992–1994) Handbook of fluorescent probes and research chemicals. Larison, K. D. (Ed.) Molecular Probes, Inc., Oregon.

    Google Scholar 

  36. Straubinger, R. M., Hong, K., Friend, D. S., and Papahadjopoulos, D. (1983) Cell 32:1069–1079.

    PubMed  Google Scholar 

  37. Yuan, F., Leunig, M., Huang, S. K., Berk, D. A., Papahadjopoulos, D., and Jain, R. K. (1994) Cancer Res. 54:3352–3356.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, R.J., Wang, S., Turk, M.J. et al. The Effects of pH and Intraliposomal Buffer Strength on the Rate of Liposome Content Release and Intracellular Drug Delivery. Biosci Rep 18, 69–78 (1998). https://doi.org/10.1023/A:1020132226113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020132226113

Navigation