Skip to main content
Log in

Antiangiogenesis Therapeutic Strategies in Prostate Cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

It is now well documented that tumor progression from its early stages to an advanced metastatic state requires the recruitment of new vasculature. The reliance on angiogenesis by tumors renders them susceptible to agents that can interfere with the angiogenic process. Recent interest in the therapeutic potential of using angiogenesis as a target mechanism for anticancer therapy has led to the identification of various antiangiogenic agents that interfere at various stages of the process. This review is a summary of recent progress in the identification and characterization of antiangiogenesis agents with a focus on their utility with respect to prostate cancer. Though we focus on prostate cancer, this knowledge is relevant to any cancer that involves angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landis SH, Murray T, Bolden S, Wingo PA: Cancer statistics, 1999. CA Cancer J Clin 49: 8–31, 1, 1999

    Google Scholar 

  2. Huggins C, Hodges CV: Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin 22: 232–240, 1941

    Google Scholar 

  3. Montgomery JS, Price DK, Figg WD: The androgen receptor gene and its influence on the development and progression of prostate cancer. J Pathol 195: 138–146, 2001

    Google Scholar 

  4. Stewart RJ, Panigrahy D, Flynn E, Folkman J: Vascular endothelial growth factor expression and tumor angiogenesis are regulated by androgens in hormone responsive human prostate carcinoma: Evidence for androgen dependent destabilization of vascular endothelial growth factor transcripts. J Urol 165: 688–693, 2001

    Google Scholar 

  5. Cude KJ, Dixon SC, Guo Y, Lisella J, Figg WD: The androgen receptor: Genetic considerations in the development and treatment of prostate cancer. J Mol Med 77: 419–426, 1999

    Google Scholar 

  6. Culig Z, Hobisch A, Hittmair A, Peterziel H, Cato AC, Bartsch G, Klocker H: Expression, structure, and function of androgen receptor in advanced prostatic carcinoma. Prostate 35: 63–70, 1998

    Google Scholar 

  7. The Veterans Administration Co-operative Urological Research Group: Treatment and survival of patients with cancer of the prostate. Surg Gynecol Obstet 124: 1011–1017, 1967

    Google Scholar 

  8. Scott WW, Menon M, Walsh PC: Hormonal therapy of prostatic cancer. Cancer 45: 1929–1936, 1980

    Google Scholar 

  9. Koivisto P, Visakorpi T, Kallioniemi OP: Androgen receptor gene amplification: A novel molecular mechanism for endocrine therapy resistance in human prostate cancer. Scand J Clin Lab Invest Suppl 226: 57–63, 1996

    Google Scholar 

  10. Crawford ED, Eisenberger MA, McLeod DG, Spaulding JT, Benson R, Dorr FA, Blumenstein BA, Davis MA, Goodman PJ: A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med 321: 419–424, 1989

    Google Scholar 

  11. Group TCAS: A comparison of the treatment of metastatic prostate cancer by testicular ablation or total androgen blockade. Cancer Treat Res 59: 29–40, 1992

    Google Scholar 

  12. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27–31, 1995

    Google Scholar 

  13. Nehls V, Schuchardt E, Drenckhahn D: The effect of fibroblasts, vascular smooth muscle cells, and pericytes on sprout formation of endothelial cells in a fibrin gel angiogenesis system. Microvasc Res 48: 349–363, 1994

    Google Scholar 

  14. Cockerill GW, Gamble JR, Vadas MA: Angiogenesis: Models and modulators. Int Rev Cytol 159: 113–160, 1995

    Google Scholar 

  15. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 100: 57–70, 2000

    Google Scholar 

  16. Choy M, Rafii S: Role of angiogenesis in the progression and treatment of prostate cancer. Cancer Invest 19: 181–191, 2001

    Google Scholar 

  17. Sokoloff MH, Chung LW: Targeting angiogenic pathways involving tumor-stromal interaction to treat advanced human prostate cancer. Cancer Metastasis Rev 17: 307–315, 1999

    Google Scholar 

  18. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–844, 1993

    Google Scholar 

  19. Folkman J, Watson K, Ingber D, Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58–61, 1989

    Google Scholar 

  20. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J: Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143: 401–409, 1993

    Google Scholar 

  21. McNamara DA, Harmey JH, Walsh TN, Redmond HP, Bouchier-Hayes DJ: Significance of angiogenesis in cancer therapy. Br J Surg 85: 1044–1055, 1998

    Google Scholar 

  22. Bauer KS, Cude KJ, Dixon SC, Kruger EA, Figg WD: Carboxyamido-triazole inhibits angiogenesis by blocking the calcium-mediated nitric-oxide synthase-vascular endothelial growth factor pathway. J Pharmacol Exp Ther 292: 31–37, 2000

    Google Scholar 

  23. Folkman J: Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med 333: 1757–1763, 1995

    Google Scholar 

  24. Suh DY: Understanding angiogenesis and its clinical applications. Ann Clin Lab Sci 30: 227–238, 2000

    Google Scholar 

  25. Dameron KM, Volpert OV, Tainsky MA, Bouck N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582–1584, 1994

    Google Scholar 

  26. Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler IJ: Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci USA 92: 4562–4566, 1995

    Google Scholar 

  27. Eriksson T, Bjorkman S, Hoglund P: Clinical pharmacology of thalidomide. European J Clin Pharmacol 57: 365–376, 2001

    Google Scholar 

  28. Kruger EA, Figg WD: TNP-470: An angiogenesis inhibitor in clinical development for cancer. Expert Opin Investig Drugs 9: 1383–1396, 2000

    Google Scholar 

  29. Kruger EA, Duray PH, Tsokos MG, Venzon DJ, Libutti SK, Dixon SC, Rudek MA, Pluda J, Allegra C, Figg WD: Endostatin inhibits microvessel formation in the ex vivo rat aortic ring angiogenesis assay. Biochem Biophys Res Commun 268: 183–191, 2000

    Google Scholar 

  30. Pribluda VS, Gubish ER, Lavallee TM, Treston A, Swartz GM, Green SJ: 2-Methoxyestradiol: An endogenous antiangiogenic and antiproliferative drug candidate. Cancer Metastasis Rev 19: 173–179, 2000

    Google Scholar 

  31. Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364, 1996

    Google Scholar 

  32. Morikawa W, Yamamoto K, Ishikawa S, Takemoto S, Ono M, Fukushi JI, Naito S, Nozaki C, Iwanaga S, Kuwano M: Angiostatin generation by cathepsin D secreted by human prostate carcinoma cells. J Biol Chem 275: 38912–38920, 2000

    Google Scholar 

  33. Hori A, Sasada R, Matsutani E, Naito K, Sakura Y, Fujita T, Kozai Y: Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res 51: 6180–6184, 1991

    Google Scholar 

  34. Dvorak HF, Brown LF, Detmar M, Dvorak AM: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146: 1029–1039, 1995

    Google Scholar 

  35. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13: 9–22, 1999

    Google Scholar 

  36. Izawa JI, Dinney CP: The role of angiogenesis in prostate and other urologic cancers: A review.CMAJ164: 662–670, 2001.

    Google Scholar 

  37. Ferrer FA, Miller LJ, Andrawis RI, Kurtzman SH, Albertsen PC, Laudone VP, Kreutzer DL: Angiogenesis and prostate cancer: in vivo and in vitro expression of angiogenesis factors by prostate cancer cells. Urology 51: 161–167, 1998

    Google Scholar 

  38. Greene G, Kitadai Y, Pettaway C, von Eschenbach A, Bucana, C, Fidler I: Correlation of metastasis-related gene expression with metastatic potential in human prostate carcinoma cells implanted in nude mice using an in situ messenger RNA hybridization technique. Am J Pathol 150: 1571–1582, 1997

    Google Scholar 

  39. Inoue K, Slaton JW, Eve BY, Kim SJ, Perrotte P, Balbay MD, Yano S, Bar Eli M, Radinsky, R, Pettaway CA, Dinney CP: Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res 6: 2104–2119, 2000

    Google Scholar 

  40. Shalinsky DR, Brekken J, Zou H, McDermott CD, Forsyth P, Edwards D, Margosiak S, Bender S, Truitt G, Wood A, Varki NM, Appelt K: Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann NY Acad Sci 878: 236–270, 1999

    Google Scholar 

  41. Figg WD, Dahut W, Duray P, Hamilton, M, Tompkins A, Steinberg SM, Jones E, Premkumar A, Linehan WM, Floeter MK, Chen CC, Dixon S, Kohler DR, Kruger EA, Gubish E, Pluda JM, Reed E: A randomized phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgen-independent prostate cancer. Clin Cancer Res 7: 1888–1893, 2001

    Google Scholar 

  42. Figg WD, Arlen P, Gulley J, Fernandez P, Noone M, Fedenko K, Hamilton M, Parker C, Kruger EA, Pluda J, Dahut W: A randomized phase II trial of docetaxel (taxotere) plus thalidomide in androgen-independent prostate cancer. Semin Oncol 28: 62–66, 2001

    Google Scholar 

  43. Logothetis CJ, Wu KK, Finn LD, Daliani D, Figg W, Ghaddar H, Gutterman JU: Phase I trial of the angiogenesis inhibitor TNP-470 for progressive androgen-independent prostate cancer. Clin Cancer Res 7: 1198–1203, 2001

    Google Scholar 

  44. Bauer KS, Figg WD, Hamilton JM, Jones EC, Premkumar A, Steinberg SM, Dyer V, Linehan WM, Pluda JM, Reed E: A pharmacokinetically guided Phase II study of carboxyamido-triazole in androgen-independent prostate cancer. Clin Cancer Res 5: 2324–2329, 1999

    Google Scholar 

  45. Diggle GE: Thalidomide: 40 years on. IJCP 55: 627–631, 2001

    Google Scholar 

  46. McBride W: Thalidomide and congenital abnormalities. Lancet 2: 1358, 1961

    Google Scholar 

  47. Lenz W: Thalidomide and congenital abnormalities. Lancet 1: 45, 1962

    Google Scholar 

  48. Sheskin J: Thalidomide in the treatment of lepra reactions. Clin Pharmacol Therapeut 6: 303–306, 1965

    Google Scholar 

  49. Calabrese L, Fleischer AB: Thalidomide: Current and potential clinical applications. Am J Med 108: 487–495, 2000

    Google Scholar 

  50. Bauer KS, Dixon SC, Figg WD: Inhibition of angiogenesis by thalidomide requires metabolic activation, which is species-dependent. Biochem Pharmacol 55: 1827–1834, 1998

    Google Scholar 

  51. Jorizzo JL, Schmalstieg FC, Solomon AR, Cavallo T, Taylor RS, Rudloff HB, Schmalstieg EJ, Daniels JC: Thalidomide effects in Behcet's syndrome and pustular vasculitis. Arch Intern Med 146: 878–881, 1986

    Google Scholar 

  52. Vogelsang GB, Farmer ER, Hess AD, Altamonte V, Beschorner WE, Jabs DA, Corio RL, Levin LS, Colvin OM, Wingard JR: Thalidomide for the treatment of chronic graft-versus-host disease. N Engl J Med 326: 1055–1058, 1992

    Google Scholar 

  53. Parker PM, Chao N, Nademanee A, O_Donnell MR, Schmidt GM, Snyder DS, Stein AS, Smith EP, Molina A, Stepan DE: Thalidomide as salvage therapy for chronic graft-versus-host disease. Blood 86: 3604–3609, 1995

    Google Scholar 

  54. Makonkawkeyoon S, Limson Pobre RN, Moreira AL, Schauf V, Kaplan G: Thalidomide inhibits the replication of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 90: 5974–5978, 1993

    Google Scholar 

  55. Revuz J, Guillaume JC, Janier M, Hans P, Marchand C, Souteyrand P, Bonnetblanc JM, Claudy A, Dallac S, Klene C: Crossover study of thalidomide vs placebo in severe recurrent aphthous stomatitis. Arch Dermatol 126: 923–927, 1990

    Google Scholar 

  56. Thomas DA, Kantarjian HM: Current role of thalidomide in cancer treatment. Curr Opin Oncol 12: 564–573, 2000

    Google Scholar 

  57. D' Amato RJ, Loughnan MS, Flynn E, Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91: 4082–4085, 1994

  58. Kenyon BM, Browne F, D_Amato RJ: Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 64: 971–978, 1997

    Google Scholar 

  59. Turk BE, Jiang H, Liu JO: Binding of thalidomide to alpha1-acid glycoprotein may be involved in its inhibition of tumor necrosis factor alpha production. Proc Natl Acad Sci USA 93: 7552–7556, 1996

    Google Scholar 

  60. Singhal S, Mehta J: Thalidomide in cancer: Potential uses and limitations. BioDrugs 15: 163–172, 2001

    Google Scholar 

  61. Barlogie B, Desikan R, Eddlemon P, Spencer T, Zeldis J, Munshi N, Badros A, Zangari M, Anaissie E, Epstein J, Shaughnessy J, Ayers D, Spoon D, Tricot G: Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: Identification of prognostic factors in a phase 2 study of 169 patients. Blood 98: 492–494, 2001

    Google Scholar 

  62. Rajkumar SV, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE, Kyle RA, Gertz MA, Greipp PR: Thalidomide in the treatment of relapsed multiple myeloma. Mayo Clin Proc 75: 897–901, 2000

    Google Scholar 

  63. Little RF, Wyvill KM, Pluda JM, Welles L, Marshall V, Figg WD, Newcomb FM, Tosato G, Feigal E, Steinberg SM, Whitby D, Goedert JJ, Yarchoan R: Activity of thalidomide in AIDS-related Kaposi's sarcoma. J Clin Oncol 18: 2593–2602, 2000

    Google Scholar 

  64. Fine HA, Figg WD, Jaeckle K, Wen PY, Kyritsis AP, Loeffler JS, Levin VA, Black PM, Kaplan R, Pluda JM, Yung WK: Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 18: 708–715, 2000

    Google Scholar 

  65. Eisen T, Boshoff C, Mak I, Sapunar F, Vaughan MM, Pyle L, Johnston SR, Ahern R, Smith IE, Gore ME: Continuous low dose Thalidomide: A phase II study in advanced melanoma, renal cell, ovarian and breast cancer. Br J Cancer 82: 812–817, 2000

    Google Scholar 

  66. Stebbing J, Benson C, Eisen T, Pyle L, Smalley K, Bridle H, Mak I, Sapunar F, Ahern R, Gore ME: The treatment of advanced renal cell cancer with high-dose oral thalidomide. Br J Cancer 85: 953–958, 2001

    Google Scholar 

  67. Ginsburg PM, Dassopoulos T, Ehrenpreis ED: Thalidomide treatment for refractory Crohn's disease: a review of the history, pharmacological mechanisms and clinical literature. Ann Med 33: 516–525, 2001

    Google Scholar 

  68. Marx GM, Pavlakis N, McCowatt S, Boyle FM, Levi JA, Bell DR, Cook R, Biggs M, Little N, Wheeler HR: Phase II study of thalidomide in the treatment of recurrent glioblastoma multiforme. J Neuro-Oncology 54: 31–38, 2001

    Google Scholar 

  69. Stirling D: Thalidomide: A novel template for anticancer drugs. Semin Oncol 28: 602–606, 2001

    Google Scholar 

  70. Beckner ME: Factors promoting tumor angiogenesis. Cancer Invest 17: 594–623, 1999

    Google Scholar 

  71. Thomas DA, Kantarjian HM: The revitalization of thalidomide. Ann Oncol 12: 885–886, 2001

    Google Scholar 

  72. Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G: Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173: 699–703, 1991

    Google Scholar 

  73. Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA, Kaplan G: Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 177: 1675–1680, 1993

    Google Scholar 

  74. Rowland TL, McHugh SM, Deighton J, Dearman RJ, Ewan PW, Kimber I: Differential regulation by thalidomide and dexamethasone of cytokine expression in human peripheral blood mononuclear cells. Immunopharmacology 40: 11–20, 1998

    Google Scholar 

  75. Joseph IB, Isaacs JT: Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents. J Natl Cancer Inst 90: 1648–1653, 1998

    Google Scholar 

  76. Ching LM, Browne WL, Tchernegovski R, Gregory T, Baguley BC, Palmer BD: Interaction of thalidomide, phthalimide analogues of thalidomide and pentoxifylline with the anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid: Concomitant reduction of serum tumour necrosis factor-alpha and enhancement of anti-tumour activity. Br J Cancer 78: 336–343, 1998

    Google Scholar 

  77. Wnendt S, Finkam M, Winter W, Ossig J, Raabe G, Zwingenberger K: Enantioselective inhibition of TNF-alpha release by thalidomide and thalidomide-analogues. Chirality 8: 390–396, 1996

    Google Scholar 

  78. Hoglund P, Eriksson T, Bjorkman S: A double-blind study of the sedative effects of the thalidomide enantiomers in humans. J Pharmacokinet Biopharm 26: 363–383, 1998

    Google Scholar 

  79. Eriksson T, Bjorkman S, Roth B, Hoglund P: Intravenous formulations of the enantiomers of thalidomide: Pharmacokinetic and initial pharmacodynamic characterization in man. J Pharm Pharmacol 52: 807–817, 2000

    Google Scholar 

  80. Stephens TD, Fillmore BJ: Hypothesis: Thalidomide embryopathy-proposed mechanism of action. Teratology 61: 189–195, 2000

    Google Scholar 

  81. Stephens TD, Bunde CJ, Fillmore BJ: Mechanism of action in thalidomide teratogenesis. Biochem Pharmacol 59: 1489–1499, 2000

    Google Scholar 

  82. Haslett PA, Corral LG, Albert M, Kaplan G: Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+subset. J Exp Med 187: 1885–1892, 1998

    Google Scholar 

  83. Neben K, Moehler T, Kraemer A, Benner A, Egerer G, Ho AD, Goldschmidt H: Response to thalidomide in progressive multiple myeloma is not mediated by inhibition of angiogenic cytokine secretion. Br J Haem 115: 605–608, 2001

    Google Scholar 

  84. Fujita J, Mestre JR, Zweldis JB, Subbaramaiah K, Dannenberg AJ: Thalidomide and its analogues inhibit lipopolysaccharide-mediated induction of cyclooxygenase-2. Clin Cancer Res 7: 3349–3355, 2001

    Google Scholar 

  85. Yamada M, Kawai M, Kawai Y, Mashima Y: The effect of selective cyclooxygenase-2 inhibitor on corneal angiogenesis in the rat. Curr Eye Res 19: 300–304, 1999

    Google Scholar 

  86. Daniel TO, Liu H, Morrow JD, Crews BC, Marnett LJ: Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res 59: 4574–4577, 1999

    Google Scholar 

  87. Kirschenbaum A, Liu X, Yao S, Levine AC: The role of cyclooxygenase-2 in prostate cancer. Urology 58: 127–131, 2001

    Google Scholar 

  88. Hess S, Akermann MA, Wnendt S, Zwingenberger K, Eger K: Synthesis and immunological activity of water-soluble thalidomide prodrugs. Bioorg Med Chem 9: 1279–1291, 2001

    Google Scholar 

  89. Kandel J, Bossy-Wetzel E, Radvany F, Klagsburn M, Folkman J, Hanahan D: Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66: 1095–1104, 1991

    Google Scholar 

  90. Chen C, Parangi S, Tolentino M, Folkman J: A strategy to discover circulating angiogenesis inhibitors generated by human tumors. Cancer Res 55: 4230–4233, 1995

    Google Scholar 

  91. Good D, Polverini P, Rastinejad F, LeBeau M, Lemons R, Frazier W, Bouck N: A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Nat Acad Sci USA 87: 6624–6628, 1990

    Google Scholar 

  92. O'Reilly M, Holmgren L, Shing Y, Chen C, Rosenthal R, Moses M, Lane W, Cao Y, Sage E, Folkman J: Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis Lung carcinoma. Cell 79: 315–328, 1994

    Google Scholar 

  93. O'Reilly M, Boehm T, Shing Y, Fuakai N, Vasios G, Lane W, Flynn E, Birkhead J, Olsen B, Folkman J: Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285, 1997

    Google Scholar 

  94. O'Reilly M, Pirie-Shepard S, Lane W, Folkman J: Antiangiogenic activity of a cleaved conformation of the serpin antithrombin. Science 285: 1926–1928, 1999

    Google Scholar 

  95. Yamiguchi N, Anand-Apte B, Lee M, Sasaki T, Fukai N, Shapiro R, Que I, Lowik C, Timpl R, Olsen B: Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J 18: 4414–4423, 1999

    Google Scholar 

  96. Dhanabal M, Ramchandran R, Volk R, Stillman I, Lombardo M, Iruela-Arispe M, Simons M, VP S: Endostatin. Yeast production, mutants, and antitumor effect in renal cell carcinoma. Cancer Res 59: 189–197, 1999

    Google Scholar 

  97. Taddei L, Chiarugi P, Brogelli L, Cirri P, Magnelli L, Raugei G, Ziche M, Granger H, Chiarugi V, Ramponi G: Inhibitory effect of full-length human endostatinon in vitro angiogenesis. Biochem Biophys Res Commun 263: 340–345, 1999

    Google Scholar 

  98. Boehm T, Folkman J, Browder T, O'Reilly M: Antiangiogenic therapy of experimental cancer does not induce acquired drug reisistance. Nature 390: 404–407, 1997

    Google Scholar 

  99. Yokoyama Y, Dhanabal M, Griffioen A, Sukhatme V, Ramakrishnan S: Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res 60: 2190–2196, 2000

    Google Scholar 

  100. Perletti G, Concari P, Giardini R, Marras E, Piccinini F, Folkman J, Chen L: Antitumor activity of endostatin against carcinogen-induced rat primary mammary tumors. Cancer Res 60: 1793–1796, 2000

    Google Scholar 

  101. Dhanabal M, Volk R, Ramchandran R, Simons M, Sukhatme V: Cloning, expression, and in vitro activity of human endostatin. Biochem Biophys Res Commun 258: 345–352, 1999

    Google Scholar 

  102. Sim B, Fogler W, Zhou X, Liang H, Madsen J, Luu K, O'Reilly M, Tomaszewski J, Fortier A: Zinc ligand-disrupted recombinant human endostatin: potent inhibition of tumor growth, safety and pharmacokinetic profile. Angiogenesis 3: 41–51, 1999

    Google Scholar 

  103. Kisker O, Becker C, Prox D, Fannon M, D'Amato R, Flynn E, Fogler W, Sim B, Allred E, Pirie-Shepard S, Folkman J: Continuous administration of endostatin by intraperitoneally implanted osmotic pump inproves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res 61: 7669–7674, 2001

    Google Scholar 

  104. Yokoyami Y, Green J, Sukhatme V, Ramakrishnan S: Effect of endostatin on spontaneous tumorigenesis of mammary adenocarcinomas in a transgenic mouse model. Cancer Res 60: 2000

  105. Hasle H, Clemmensen I, Mikkelsen M: Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet 355: 165–169, 2000

    Google Scholar 

  106. Iughetti P, Suzuki O, Godoi P, Alves V, Sertie A, Zorick T, Soares F, Camargo A, Moreira E, di Loreto C, Moreira-Filho A, Simpson A, Oliva G, Passos-Bueno M: A polymorphism in endostatin, an angiogenesis inhibitor, predisposes for the development of prostatic adenocarcinoma. Cancer Res 61: 2001

  107. Kohn EC, Liotta LA: L651582: A novel antiproliferative and antimetastasis agent. J Natl Cancer Inst 82: 54–60, 1990

    Google Scholar 

  108. Kohn EC, Sandeen MA, Liotta LA: In vivo efficacy of a novel inhibitor of selected signal transduction pathways including calcium, arachidonate, and inositol phosphates. Cancer Res 52: 3208–3212, 1992

    Google Scholar 

  109. Lambert PA, Somers KD, Kohn EC, Perry RR: Antiproliferative and antiinvasive effects of carboxyamido-triazole on breast cancer cell lines. Surgery 122: 372–378; discussion 378-379, 1997

    Google Scholar 

  110. Wasilenko WJ, Palad AJ, Somers KD, Blackmore PF, Kohn EC, Rhim JS, Wright GL, Schellhammer PF: Effects of the calcium influx inhibitor carboxyamido-triazole on the proliferation and invasiveness of human prostate tumor cell lines. Int J Cancer 68: 259–264, 1996

    Google Scholar 

  111. Jacobs W, Mikkelsen T, Smith R, Nelson K, Rosenblum ML, Kohn EC: Inhibitory effects of CAI in glioblastoma growth and invasion. J Neuro-Oncology 32: 93–101, 1997

    Google Scholar 

  112. Qin LX, Tang ZY, Li XM, Bu W, Xia JL: Effect of antiangiogenic agents on experimental animal models of hepatocellular carcinoma. Ann Acad Med Singapore 28: 147–151, 1999

    Google Scholar 

  113. Gusovsky F, Lueders JE, Kohn EC, Felder CC: Muscarinic receptor-mediated tyrosine phosphorylation of phospholipase C-gamma. An alternative mechanism for cholinergic-induced phosphoinositide breakdown. J Biol Chem 268: 7768–7772, 1993

    Google Scholar 

  114. Felder CC, Ma AL, Liotta LA, Kohn EC: The antiproliferative and antimetastatic compound L651582 inhibits muscarinic acetylcholine receptor-stimulated calcium influx and arachidonic acid release. J Pharmacol Exp Ther 257: 967–971, 1991

    Google Scholar 

  115. Kohn EC, Jacobs W, Kim YS, Alessandro R, Stetler Stevenson WG, Liotta LA: Calcium influx modulates expression of matrix metalloproteinase-2 (72-kDa type IV collagenase, gelatinase A). J Biol Chem 269: 21505–21511, 1994

    Google Scholar 

  116. Kohn EC, Alessandro R, Spoonster J, Wersto RP, Liotta LA: Angiogenesis: Role of calcium-mediated signal transduction. Proc Natl Acad Sci USA 92: 1307–1311, 1995

    Google Scholar 

  117. Alessandro R, Masiero L, Lapidos K, Spoonster J, Kohn EC: Endothelial cell spreading on type IV collagen and spreading-induced FAK phosphorylation is regulated by Ca2+influx. Biochem Biophys Res Commun 248: 635–640, 1998

    Google Scholar 

  118. Ge S, Rempel SA, Divine G, Mikkelsen T: Carboxyamido-triazole induces apoptosis in bovine aortic endothelial and human glioma cells. Clin Cancer Res 6: 1248–1254, 2000

    Google Scholar 

  119. Waselenko J, Shinn C, Willis C, Flinn I, Grever M, Byrd J: Carboxyamido-triazole (CAI) - a novel 'static' signal transduction inhibitor induces apoptosis in human B-cell chronic lymphocytic leukemia cells. Leuk Lymph 42: 1049–1053, 2001

    Google Scholar 

  120. Figg WD, Cole KA, Reed E, Steinberg SM, Piscitelli SC Davis PA, Soltis MJ, Jacob J, Boudoulas S, Goldspiel B: Pharmacokinetics of orally administered carboxyamidotriazole, an inhibitor of calcium-mediated signal transduction. Clin Cancer Res 1: 797–803, 1995

    Google Scholar 

  121. Ludden L, Strong J, Kohn E, Collins J: Similarity of metabolism of CAI (NSC 609974) in human liver tissue in vitro and in humans in vivo. Clin Cancer Res 1: 399–405, 1995

    Google Scholar 

  122. Kohn EC, Reed E, Sarosy G, Christian M, Link CJ, Cole K, Figg WD, Davis PA, Jacob J, Goldspiel B, Liotta LA: Clinical investigation of a cytostatic calcium influx inhibitor in patients with refractory cancers. Cancer Res 56: 569–573, 1996

    Google Scholar 

  123. Kohn EC, Figg WD, Sarosy GA, Bauer KS, Davis PA, Soltis MJ, Thompkins A, Liotta LA, Reed, E: Phase I trial of micronized formulation carboxyamidotriazole in patients with refractory solid tumors: Pharmacokinetics, clinical outcome, and comparison of formulations. J Clin Oncol 15: 1985–1993, 1997

    Google Scholar 

  124. Kohn EC, Reed E, Sarosy GA, Minasian L, Bauer KS, Bostick Bruton F, Kulpa V, Fuse E, Tompkins A, Noone M, Goldspiel B, Pluda J, Figg WD, Liotta LA: A phase I trial of carboxyamido-triazole and paclitaxel for relapsed solid tumors: Potential efficacy of the combination and demonstration of pharmacokinetic interaction. Clin Cancer Res 7: 1600–1609, 2001

    Google Scholar 

  125. Berg FD, Kuss E: Serum concentration and urinary excretion of 'classical' estrogens, catecholestrogens and 2-methoxyestrogens in normal human pregnancy. Arch Gynecol Obstet 251: 17–27, 1992

    Google Scholar 

  126. Fotsis T, Zhang Y, Pepper MS, Adlercreutz H, Montesano R, Nawroth PP, Schweigerer L: The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 368: 237–239, 1994

    Google Scholar 

  127. Klauber N, Parangi S, Flynn E, Hamel E, D_Amato RJ: Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res 57: 81–86, 1997

    Google Scholar 

  128. Yue TL, Wang X, Louden CS, Gupta S, Pillarisetti K, Gu JL, Hart TK, Lysko PG, Feuerstein GZ: 2-Methoxyestradiol, an endogenous estrogen metabolite, induces apoptosis in endothelial cells and inhibits angiogenesis: Possible role for stress-activated protein kinase signaling pathway and Fas expression. Mol Pharmacol 51: 951–962, 1997

    Google Scholar 

  129. Nicosia RF, Ottinetti A: Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest 63: 115–122, 1990

    Google Scholar 

  130. Wassberg E: Angiostatic treatment of neuroblastoma. Ups J Med Sci 104: 1–24, 1999

    Google Scholar 

  131. Schumacher G, Kataoka M, Roth JA, Mukhopadhyay T: Potent antitumor activity of 2-methoxyestradiol in human pancreatic cancer cell lines. Clin Cancer Res 5: 493–499, 1999

    Google Scholar 

  132. Shang W, Konidari I, Schomberg DW: 2-Methoxyestradiol, an endogenous estradiol metabolite, differentially inhibits granulosa and endothelial cell mitosis: A potential follicular antiangiogenic regulator. Biol Reprod 65: 622–627, 2001

    Google Scholar 

  133. Miller KD, Haney LG, Pribluda VS, Sledge GW: A phase I safety, pharmacokinetic and pharmacodynamic study of 2-methoxyestradiol (2ME2) in patients (Pts) with refractory metastatic breast cancer (MBC). American Society of Clinical Oncology (Abstract # 170), 2001

  134. Figg WD, Pluda JM, Lush RM, Saville MW, Wyvill K, Reed E, Yarchoan R: The pharmacokinetics of TNP-470, a new angiogenesis inhibitor. Pharmacotherapy 17: 91–97, 1997

    Google Scholar 

  135. Miki T, Nonomura N, Nozawa M, Harada Y, Nishimura K, Kojima Y, Takahara S, Okuyama A: Angiogenesis inhibitor TNP-470 inhibits growth and metastasis of a hormone-independent rat prostatic carcinoma cell line. J Urol 160: 210–213, 1998

    Google Scholar 

  136. Yamaoka M, Yamamoto T, Ikeyama S, Sudo K, Fujita T: Angiogenesis inhibitor TNP-470 (AGM-1470) potently inhibits the tumor growth of hormone-independent human breast and prostate carcinoma cell lines. Cancer Res 53: 5233–5236, 1993

    Google Scholar 

  137. Kim J, Logothetis CJ: Serologic tumor markers, clinical biology, and therapy of prostatic carcinoma. Urol Clin North Am 26: 281–290, 1999

    Google Scholar 

  138. Gibaldi M: Regulating angiogenesis: a new therapeutic strategy. J Clin Pharmacol 38: 898–903, 1998

    Google Scholar 

  139. Fernandez A, Udagawa T, Schwesinger C, Beecken W, Achilles Gerte E, McDonnell T, D_Amato R: Angiogenic potential of prostate carcinoma cells overexpressing bcl-2. J Natl Cancer Inst 93: 208–213, 2001

    Google Scholar 

  140. Horti J, Dixon SC, Logothetis CJ, Guo Y, Reed E, Figg WD: Increased transcriptional activity of prostate-specific antigen in the presence of TNP-470, an angiogenesis inhibitor. Br J Cancer 79: 1588–1593, 1999

    Google Scholar 

  141. Zhang M, Volpert O, Shi YH, Bouck N: Maspin is an angiogenesis inhibitor. Nat Me 6: 196–199, 2000

    Google Scholar 

  142. Stearns ME, Garcia FU, Fudge K, Rhim J, Wang M: Role of interleukin 10 and transforming growth factor beta1 in the angiogenesis and metastasis of human prostate primary tumor lines from orthotopic implants in severe combined immunodeficiency mice. Clin Cancer Res 5: 711–720, 1999

    Google Scholar 

  143. Papadopoulos I, Sivridis E, Giatromanolaki A, Koukourakis MI: Tumor angiogenesis is associated with MUC1 overexpression and loss of prostate-specific antigen expression in prostate cancer. Clin Cancer Res 7: 1533–1538, 2001

    Google Scholar 

  144. Miyadera K, Sumizawa T, Haraguchi M, Yoshida H, Konstanty W, Yamada Y, Akiyama S: Role of thymidine phosphorylase activity in the angiogenic effect of platelet derived endothelial cell growth factor/thymidine phosphorylase. Cancer Res 55: 1687–1690, 1995

    Google Scholar 

  145. Cao G, Su J, Lu W, Zhang F, Zhao G, Marteralli D, Dong Z: Adenovirus-mediated interferon-beta gene therapy suppresses growth and metastasis of human prostate cancer in nude mice. Cancer Gene Ther 8: 497–505, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macpherson, G.R., Ng, S.S., Lakhani, N.J. et al. Antiangiogenesis Therapeutic Strategies in Prostate Cancer. Cancer Metastasis Rev 21, 93–106 (2002). https://doi.org/10.1023/A:1020128708223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020128708223

Navigation