General Relativity and Gravitation

, Volume 34, Issue 10, pp 1701–1718 | Cite as

Regge Calculus: A Unique Tool for Numerical Relativity

  • Adrian P. Gentle


The application of Regge calculus, a lattice formulation of general relativity, is reviewed in the context of numerical relativity. Particular emphasis is placed on problems of current computational interest, and the strengths and weaknesses of the lattice approach are highlighted. Several new and illustrative applications are presented, including initial data for the head on collision of two black holes, and the time evolution of vacuum axisymmetric Brill waves.

Regge calculus numerical relativity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (1973).Google Scholar
  2. [2]
    L. Lehner, (2001). Class. Quant. Grav. 18, R25.Google Scholar
  3. [3]
    T. Regge, (1961). Nouvo Cimento 19, 558.Google Scholar
  4. [4]
    R. M. Williams, (1997). Nucl. Phys. Proc. Suppl. 57, 73–81.Google Scholar
  5. [5]
    R. M. Williams, P. A. Tuckey, (1992). Class. Quant. Grav. 9, 1409.Google Scholar
  6. [6]
    W. A. Miller, (1997). Class. Quant. Grav. 14, L199.Google Scholar
  7. [7]
    L. C. Brewin, (1998). Class. Quant. Grav. 15, 3085.Google Scholar
  8. [8]
    A. P. Gentle and W. A. Miller, (1998). Class. Quant. Grav. 15, 389.Google Scholar
  9. [9]
    J. W. York, in Sources of Gravitational Radiation, ed. L. Smarr, (Cambridge University Press) 1979.Google Scholar
  10. [10]
    J. W. Barrett, M. Galassi, W. A. Miller, R. D. Sorkin, P. A. Tuckey and R. M. Williams, (1997). Int. J. Theor. Phys. 36, 815.Google Scholar
  11. [11]
    L. C. Brewin, A. P. Gentle, (2001). Class. Quant. Grav. 18, 517.Google Scholar
  12. [12]
    D. R. Brill, (1959). Ann. Phys. 7, 466.Google Scholar
  13. [13]
    M. R. Dubal, (1989). Class. Quant. Grav. 6, 141.Google Scholar
  14. [14]
    A. P. Gentle, D. E. Holz, W. A. Miller, J. A. Wheeler, (1999). Class. Quant. Grav. 16, 1979.Google Scholar
  15. [15]
    D. H. Bernstein, Ph.D. Thesis, University of Illonois at Urbana-Champaign, 1993.Google Scholar
  16. [16]
    A. P. Gentle, (1999). Class. Quant. Grav. 16, 1987.Google Scholar
  17. [17]
    C. W. Misner, (1960). Phys. Rev. 118, 1110.Google Scholar
  18. [18]
    P. Anninos, D. Hobill, E. Seidel, L. Smarr, W.-M. Suen, (1995). Phys. Rev. D52, 2044.Google Scholar
  19. [19]
    D. Garfinkle, G. C. Duncan, (2001). Phys. Rev. D63 044011.Google Scholar
  20. [20]
    K. Eppley, (1977). Phys. Rev. D16 1609.Google Scholar
  21. [21]
    M. Alcubierre, B. Brügmann, T. Dramlitsch, J. A. Font, P. Papadopoulous, E. Seidel, N. Stergioulas, R. Takahashi, (2000). Phys. Rev. D62 044034.Google Scholar
  22. [22]
    L. Smarr, A. Čadež, B. DeWitt and K. Eppley, (1976). Phys. Rev. D14, 2443.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Adrian P. Gentle
    • 1
  1. 1.Theoretical Division (T-6, MS B288)Los Alamos National LaboratoryLos Alamos

Personalised recommendations