Skip to main content
Log in

Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part III: A Fourier transformed infrared spectroscopy study

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

FTIR spectroscopy was employed to investigate high molecular weight substances formed on a platinum electrode surface during the electrochemical oxidation of phenol and its chlorinated derivatives. Potentiodynamic (potential range from −0.80 V to 0.85 V vs SHE; scan rate 200 mV s−1) and potentiostatic (at 0.78 V vs SHE) electropolymerization was used in alkaline solutions (1 M NaOH) containing 0.1 M of phenol, monochlorophenols, dichlorophenols, trichlorophenols and pentachlorophenol. The IR spectra of the corresponding monomers were recorded for the comparison. The FTIR spectroscopy studies revealed that the polymers formed under potentiodynamic and potentiostatic conditions are of aromatic nature (–C=C– stretching vibrations at 1450–1600 cm−1), they have ether-linkages (=C—O—C= stretching vibrations at 1100–1300 cm−1) and quinone groups (–C=O stretching vibrations at 1630–1800 cm−1 and –C—H out-of-plane bending at 760 cm−1). The intensities of the hydroxyl group bands in most of the polymers are rather weak compared to those in the corresponding monomers. Vibrations at 2850–2960 cm−1, which are present in most of the IR spectra of polymers formed under cyclic voltammetry conditions, correspond to the stretching vibrations of the sp3 hybridized C—H bond and suggest that the cleavage of the benzene ring occurs to some extent during electrooxidation–electropolymerization of phenol and its chlorinated derivatives when reaching the potential of oxygen evolution (0.85 V vs SHE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gattrell and D.W. Kirk, J. Electrochem. Soc. 140 (1993) 903.

    Google Scholar 

  2. M. Gattrell and D.W. Kirk, J. Electrochem. Soc. 139 (1992) 2736.

    Google Scholar 

  3. M. Gattrell and D.W. Kirk, J. Electrochem. Soc. 140 (1993) 1534.

    Google Scholar 

  4. R. Lapuente, F. Cases, P. Garces, E. Morallon and J.L. Vazquez, J. Electroanal. Chem. 451 (1998) 163.

    Google Scholar 

  5. J. Wang, M. Jiang and F. Lu, J. Electroanal. Chem. 444 (1998) 127.

    Google Scholar 

  6. P.I. Iotov and S.V. Kalcheva, J. Electroanal. Chem. 442 (1998) 19.

    Google Scholar 

  7. F. Bruno, M.C. Pham and J.E. Dubois, Electrochim. Acta 22 (1977) 451.

    Google Scholar 

  8. M. Gattrell and B. MacDougall, J. Electrochem. Soc. 146 (1999) 3335.

    Google Scholar 

  9. D. Pletcher and A. Alvarez-Gallegos, Electrochim. Acta 44 (1998) 853.

    Google Scholar 

  10. A. Alvarez-Gallegos and D. Pletcher, Electrochim. Acta 44 (1999) 2483.

    Google Scholar 

  11. J. Wang and T. Martinez, J. Electroanal. Chem. 313 (1991) 129.

    Google Scholar 

  12. K.M. Richard and A.A. Gewirth, J. Electrochem. Soc. 143 (1996) 2088.

    Google Scholar 

  13. K.M. Richard and A.A. Gewirth, J. Phys. Chem. 100 (1996) 7204.

    Google Scholar 

  14. S.H. Glarum, J.H. Marshall, M.Y. Hellman and G.N. Taylor, J. Electrochem. Soc. 134 (1987) 81.

    Google Scholar 

  15. P. Mourcel, M.C. Pham, P.C. Lacaze and J.E. Dubois, J. Electroanal. Chem. 145 (1983) 467.

    Google Scholar 

  16. M. Delamar, M. Chemini and J.E. Dubois, J. Electroanal. Chem. 169 (1984) 145.

    Google Scholar 

  17. G.D. Staffin and C.C. Price, J. Am. Chem. Soc. 82 (1960) 3632.

    Google Scholar 

  18. Z. Ežerskis and Z. Jusys, J. Appl. Electrochem. 31 (2001) 1117.

    Google Scholar 

  19. Z. Ežerskis, G. Stalnionis and Z. Jusys, J. Appl. Electrochem. 32 (2002) 49.

    Google Scholar 

  20. W. Vielstich, ‘Brennsto.elemente’ (VCH, Weinheim 1965).

    Google Scholar 

  21. H. Angerstein-Kozlowska, B.E. Conway and W.B.A. Sharp, J. Electroanal. Chem. 43 (1973) 9.

    Google Scholar 

  22. G. Socrates, ‘Infrared Characteristic Group Frequencies’ (John Wiley & Sons, New York, 1994).

    Google Scholar 

  23. J.R. Dyer, ‘Applications ofAbsorption Spectroscopy of Organic Compounds’ (Chimija, Moscow, Russian Edition, 1970).

    Google Scholar 

  24. B. Stuart and D.J. Ando, ‘Modern Infrared Spectroscopy’ (John Wiley & Sons, New York, 1996).

    Google Scholar 

  25. E. Pretsch, W. Simon, J. Seibl and T. Clerc, ‘Tables of Spectral Data for Structure Determination of Organic Compounds’ (Springer, Berlin, 1989).

    Google Scholar 

  26. Z. Ežerskis and Z. Jusys, J. Appl. Electrochem, submitted.

  27. Z. Ežerskis and Z. Jusys, Pure Appl. Chem. 73 (2001) 1929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ežerskis, Z., Jusys, Z. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part III: A Fourier transformed infrared spectroscopy study. Journal of Applied Electrochemistry 32, 755–762 (2002). https://doi.org/10.1023/A:1020116528984

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020116528984

Navigation