Skip to main content
Log in

Electrochemical and surface analysis study of copper corrosion protection by 1-propanethiol and propyltrimethoxysilane: A comparison with 3-mercaptopropyltrimethoxysilane

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The inhibition of Cu corrosion by 1-propanethiol (1-PT) and propyltrimethoxysilane (PTS) molecules, in 0.100 mol L−1 KCl solution, was investigated and compared to 3-mercaptopropyltrimethoxysilane (MPS). Corrosion inhibition was studied as a function of the 1-PT and PTS concentration in ethanol, between 1.0 × 10−7 mol L−1 and 1.0 × 10−2 mol L−1. Inhibition efficiency was calculated from Tafel plots in 0.100 mol L−1 KCl solution. It improved with an increase in 1-PT or PTS concentration. The maximum efficiency was obtained at a 1-PT or PTS concentration of 1.0 × 10−3 mol L−1 or 1.0 × 10−5 mol L−1, respectively. Adsorption of 1-PT and PTS on copper followed a Langmuir behaviour. Potentiostatic polarization measurements indicated that 1-PT and PTS are mixed anodic/cathodic inhibitors, in the presence of dissolved oxygen. When the inhibitor exposure time of the pretreated Cu surface in 0.100 mol L−1 KCl solution was varied, a loss on the corrosion inhibition efficiency was observed for the three (MPS, PTS and 1-PT) compounds. However, the 1-PT compound maintained excellent protection in the first 12 h of exposure to a 0.100 mol L−1 KCl solution; afterwards, there was a significant loss in the inhibition efficiency. Surface analysis studies with Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) showed that the inhibitors modified the Cu surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Trabanelli, in F. Mansfeld (Ed.), ‘Corrosion Mechanisms’ (Marcel Dekker, New York, 1987), p. 119.

    Google Scholar 

  2. K. Tatsuya, N. Hiroshi and A. Kunitsugu, J. Electrochem. Soc. 143 (1996) 3866.

    Google Scholar 

  3. A.N. Starchak, A.N. Krasovskii, V.A. Anishchenko and L.D. Kosukhina, Zashch. Met. 30 (1994) 405.

    Google Scholar 

  4. M.Th. Makhlouf, S.A. El-Shatory and A. El-Said, Mater. Chem. Phys. 43 (1996) 76.

    Google Scholar 

  5. M.Th. Makhlouf and M.H. Wahdan, Pol. J. Chem. 69 (1995) 1072.

    Google Scholar 

  6. M.Th. Makhlouf, M.H. Wahdan and M. Hassan, ACH-Models Chem. 132 (1995) 903.

    Google Scholar 

  7. M.H. Wahdan, Mater. Chem. Phys. 49 (1997) 135.

    Google Scholar 

  8. Yu.I. Mikshis, L.A. Rastenite and A.I. Rutavichus, Pot. Met. 33 (1997) 288.

    Google Scholar 

  9. A. Srhiri, Y. Derbali and T. Picaud, Corrosion 51 (1995) 788.

    Google Scholar 

  10. S. Sankarapapavinasam and M.F. Ahmed, J. Appl. Electrochem. 22 (1995) 390.

    Google Scholar 

  11. G. Brunoro, A. Frignani and L. Tommesani, Ann. Univ. Ferrara, Sez. Suppl., 10 (8th European Symposium on ‘Corrosion Inhibitors', 1995, Vol. 2), (1995), p. 1053.

    Google Scholar 

  12. K. Mori and Y. Nakamura, J. Polym. Sci. Polym. Lett. Ed. 21 (1983) 889.

    Google Scholar 

  13. D.L. Seymour, S. Bao, C.F. McConville, M.D. Crapper, D.P. Woodru. and R.G. Jones, Surf. Sci. 189/190 (1987) 529.

    Google Scholar 

  14. J.Y. Gui, D.A. Stern, D.G. Frank, F. Lu, D.C. Zapien and A. Hubbard, Langmuir 7 (1991) 955.

    Google Scholar 

  15. J. Uehara and K. Aramaki, J. Electrochem. Soc. 138 (1991) 3245.

    Google Scholar 

  16. M.D. Porter, T.B. Bright, D.L. Allara and C.E.D. Chidsey, J. Am. Chem. Soc. 109 (1987) 3559.

    Google Scholar 

  17. G.M. Whitesides and P.E. Laibinis, Langmuir 6 (1990) 87.

    Google Scholar 

  18. M.M. Walczak, C. Chung, S.M. Stole, C.A. Widrig and M.D. Porter, J. Am. Chem. Soc. 113 (1991) 2370.

    Google Scholar 

  19. C.A. Widrig, C. Chung and M.D. Porter, J. Electroanal. Chem. 310 (1991) 335.

    Google Scholar 

  20. S.M. Stole and M.D. Porter, Langmuir 6 (1990) 1199.

    Google Scholar 

  21. P.E. Laibinis, G.M. Whitesides, D.L. Allara, Y.T. Tao, A.N. Parikh and R.G. Nuzzo, J. Am. Chem. Soc. 113 (1991) 7152.

    Google Scholar 

  22. P.E. Laibinis and G.M. Whitesides, J. Am. Chem. Soc. 114 (1992) 1990.

    Google Scholar 

  23. L.C.F. Blackman and M.J.S. Dewar, J. Chem. Soc. 195 (1990) 171.

    Google Scholar 

  24. M. Musiani, G. Mengoli, M. Fleischmann and R.B. Lowry, J. Electroanal. Chem. 217 (1987) 187.

    Google Scholar 

  25. M. Ohsawa and W. Suetaka, Corros. Sci. 19 (1979) 709.

    Google Scholar 

  26. G. Trabanelli and V. Carassitti, in M.G. Fontana and R.W. Staehle (Eds), Advances in Corrosion Science and Technology Vol. 1 (Plenum, New York, 1970), p. 147.

    Google Scholar 

  27. J.C. Marconato, L.O. Bulhes and M.L. Temperini, Electrochim. Acta 43 (1998) 771.

    Google Scholar 

  28. R. Haneda and K. Aramaki, J. Electrochem. Soc. 145 (1998) 1856.

    Google Scholar 

  29. R. Haneda, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 144 (1997) 1215.

    Google Scholar 

  30. K. Suwa, T. Nishimoto, Y. Nagaoka and S. Aida, Bull. Soc. Salt Sci. Jpn. 15 (1961) 153.

    Google Scholar 

  31. Y. Yamamoto, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 140 (1993) 436.

    Google Scholar 

  32. C. Miller, P. Cuendet and M. Grätzel, J. Phys. Chem. 95 (1991) 877.

    Google Scholar 

  33. C. Miller and M. Grätzel, J. Phys. Chem. 95 (1991) 5225.

    Google Scholar 

  34. Y. Yamamoto, H. Nischihara and K. Aramaki, J. Electrochem. Soc. 140 (1993) 2.

    Google Scholar 

  35. M. Itoh, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 141 (1994) 8.

    Google Scholar 

  36. W.R. Thompson, M. Cai, M. Ho and J.E. Pemberton, Langmuir 13 (1997) 2291.

    Google Scholar 

  37. M. Itoh, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 142 (1995) 6.

    Google Scholar 

  38. Y. Fend, W.-K. Teo, K.-S. Siow, Z. Gao, K.-L. Tan and A.-K. Hsieh, J. Electrochem. Soc. 144 (1997) 1.

    Google Scholar 

  39. H.P. Lee and K. Nobe, J. Electrochem. Soc. 133 (1986) 2035.

    Google Scholar 

  40. R. Tremont, H. De Jesús-Cardona, R.J. Castro and C.R. Cabrera, J. Appl. Electrochem. 30 (2000) 737.

    Google Scholar 

  41. R. Zvauya and J.L. Dawson, J. Appl. Electrochem. 24 (1994) 943.

    Google Scholar 

  42. L.H. Dubois and R.G. Nuzzo, Annu. Rev. Phys. 43 (1992) 437.

    Google Scholar 

  43. A. Morneau, A. Manivannan and C.R. Cabrera, Langmuir 10 (1994) 3940.

    Google Scholar 

  44. J. Wood and R. Sharman, Langmuir 10 (1994) 2307.

    Google Scholar 

  45. G. Che and C.R. Cabrera, J. Electroanal. Chem. 417 (1996) 155.

    Google Scholar 

  46. G. Che, A. Manivannan and C.R. Cabrera, Physica A 231 (1996) 304.

    Google Scholar 

  47. S.K. Jung and G.S. Wilson, Anal. Chem. 68 (1996) 591.

    Google Scholar 

  48. M. Itoh, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 142 (1995) 3696.

    Google Scholar 

  49. W.R. Thompson and J.E. Pemberton, Chem. Mater. 7 (1995) 1309.

    Google Scholar 

  50. W.R. Thompson, M. Cai and J.E. Pemberton, Langmuir 13 (1997) 2291.

    Google Scholar 

  51. G. Che, H. Zhang and C.R. Cabrera, Electroanal. Chem. 453 (1998) 9.

    Google Scholar 

  52. W.R. Thompson, M. Cai, M. Ho and J.E. Pemberton, Langmuir 13 (1997) 2291.

    Google Scholar 

  53. M. Itoh, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 142 (1995) 6.

    Google Scholar 

  54. Y. Fend, W.-K. Teo, K.-S. Siow, Z. Gao, K.-L. Tan and A.-K. Hsieh, J. Electrochem. Soc. 144 (1997) 1.

    Google Scholar 

  55. H.P. Lee and K. Nobe, J. Electrochem. Soc. 133 (1986) 2035.

    Google Scholar 

  56. S. Sankarapapavinasam and M.F. Ahmed, J. Appl. Electrochem. 22 (1990) 390.

    Google Scholar 

  57. G. Quartarone, G. Moretti, T. Bellomi, G. Capobianco and A. Zingales, Corrosion 54 (1998) 606.

    Google Scholar 

  58. J.O'M. Bockris and D.A.J. Swinkels, J. Electrochem. Soc. 111 (1964) 736.

    Google Scholar 

  59. E. Kamis, Corrosion 46 (1990) 478.

    Google Scholar 

  60. A.N. Frumpkin and B.B. Damanskin, in J.O'M. Bockris, B.E. Conway (Eds), ‘Modern Aspects of Electrochemistry’, Vol. 3, (Butterworths, London, 1964), p. 152.

    Google Scholar 

  61. B.G. Ateya, B.E. El-Anadouli and F.M. El-Nizami, Corros. Sci. 24 (1984) 509.

    Google Scholar 

  62. R. Zvauya and J.L. Dawson, J. Appl. Electrochem. 24 (1994) 943.

    Google Scholar 

  63. E. Kamis, F. Bellucci, R.M. Latanision and E.S.H. El-Ashry, Corrosion 47 (1991) 677.

    Google Scholar 

  64. F.M. Donahue and K. Nobe, J. Electrochem. Soc. 112 (1965) 886.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.R. Cabrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tremont, R., Cabrera, C. Electrochemical and surface analysis study of copper corrosion protection by 1-propanethiol and propyltrimethoxysilane: A comparison with 3-mercaptopropyltrimethoxysilane. Journal of Applied Electrochemistry 32, 783–793 (2002). https://doi.org/10.1023/A:1020114331228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020114331228

Navigation