Advertisement

Viscosities of liquid metal alloys from nonequilibrium molecular dynamics

  • Yue Qi
  • Tahir Çağin
  • Yoshitaka Kimura
  • William A. GoddardIII
Article

Abstract

We have developed a nonequilibrium molecular dynamics (NEMD) approach to predict viscosity by including external shear rates directly into the Hamiltonian equations of motion. Using the quantum Sutton–Chen (Q–SC) many-body potentials for Au and Cu, we applied NEMD to predict the viscosity as a function of shear rates for AuxCu1−x alloys with x ranging from 0 to 100%. This was done for temperatures of 1500 K to 2000 K. The predicted viscosities are in reasonable agreement with experiment. In particular, we find that fixing the density and changing the temperature leads to very little change in the shear viscosity. Thus, the temperature dependence in viscosity is mainly due to the change in density with temperature.

Cu-Ag Alloy Liquid metals Viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirai, M., Iron Steel Inst. Japan Int., 33 (1993) 251.Google Scholar
  2. 2.
    Seetharaman, S. and Sichen, D., Iron Stell Inst. Japan Int., 37 (1997) 109.Google Scholar
  3. 3.
    Heyes, D.M., Comp. Phys. R., 8 (1988) 71.CrossRefGoogle Scholar
  4. 4.
    Evans, D.J. and Morriss, G.P., Statistical Mechanics of Nonequilibrium Liquid, Academic Press, London, 1990.Google Scholar
  5. 5.
    Koishi, T., Arai, Y., Shirakawa, Y. and Tamaki, S., J. Phys. Soc. Japan, 66 (1997) 3188.CrossRefGoogle Scholar
  6. 6.
    Mundy, J., Balasubramanian, S., Bagchi, K., Siepmann, J.I. and Klein, M.L., Faraday Discussions, 104 (1996) 17.CrossRefGoogle Scholar
  7. 7.
    Allen, W. and Rowley, R.L., J. Chem. Phys., 106 (1997) 10273.CrossRefGoogle Scholar
  8. 8.
    Balasubramanian, S., Mundy, C.J. and Klein, M.L., J. Chem. Phys., 105 (1996) 11190.CrossRefGoogle Scholar
  9. 9.
    Sarman, S., Cummings, P.T. and Evans, D.J., Intl. J. Thermophysics, 15 (1994) 1125.CrossRefGoogle Scholar
  10. 10.
    Sutton, A.P. and Chen, J., Phil. Mag. Lett., 61 (1990) 139.Google Scholar
  11. 11.
    Rafii-Tabar, H. and Sutton, A.P., Phil. Mag. Lett., 63 (1991) 217.Google Scholar
  12. 12.
    Kimura, Y., Cagin, T. and Goddard, W.A. III, unpublished; Cagin, T., Qi, Y., Li, H., Kimura, Y., Ikeda, H., Johnson, W.L., Goddard, W.A., III in Bulk Metallic Glasses, MRS Symp. Series Vol. 554, 43-48 (1999), Inoue, A., Johnson, W.L., Liu, C.T. (eds.)Google Scholar
  13. 13.
    Evans, J., Phys. Lett., A74 (1970) 229.Google Scholar
  14. 14.
    Evans, J. and Hanley, H.J.M., Phys. Rev., A20 (1979) 1648.Google Scholar
  15. 15.
    Handbook of Chemistry & Physics, 51st edition, Chemical Rubber Co., 1971.Google Scholar
  16. 16.
    Handbook of Chemistry & Physics, 74th edition, CRC Press, New York, 1991.Google Scholar
  17. 17.
    Smithells Metals Reference Book, 6th editon, Butterworths Co., 1983.Google Scholar
  18. 18.
    Handbook of Physico-Chemical Properties at High Temperatures, The 140th Committee of Japan Society for Promotion of Science, ISIJ, Tokyo, 1988.Google Scholar
  19. 19.
    Gebhardt, E. and Worwag, G., Z. Metallkunde, 42 (1951) 358.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Yue Qi
    • 1
  • Tahir Çağin
    • 1
  • Yoshitaka Kimura
    • 1
  • William A. GoddardIII
    • 1
  1. 1.Materials and Process Simulation Center, Beckman Institute (139-74) Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyU.S.A

Personalised recommendations