Skip to main content
Log in

Exact Buffer Overflow Calculations for Queues via Martingales

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Let τ n be the first time a queueing process like the queue length or workload exceeds a level n. For the M/M/1 queue length process, the mean \(\mathbb{E}\)τ n and the Laplace transform \(\mathbb{E}\)e-sτn is derived in closed form using a martingale introduced in Kella and Whitt (1992). For workload processes and more general systems like MAP/PH/1, we use a Markov additive extension given in Asmussen and Kella (2000) to derive sets of linear equations determining the same quantities. Numerical illustrations are presented in the framework of M/M/1 and MMPP/M/1 with an application to performance evaluation of telecommunication systems with long-range dependent properties in the packet arrival process. Different approximations that are obtained from asymptotic theory are compared with exact numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Abate and W. Whitt, The Fourier-series method for inverting transforms of probability distributions, Queueing Systems 10 (1992) 5-87.

    Google Scholar 

  2. A. Andersen and B.F. Nielsen, A Markovian approach for modeling packet traffic with long-range dependence, IEEE J. Selected Areas Commun. 16 (1998) 719-732.

    Google Scholar 

  3. C.W. Andersson, Extreme value theory for a class of discrete distributions with applications to some stochastic processes, J. Appl. Probab. 7 (1970) 99-113.

    Google Scholar 

  4. S. Asmussen, Applied Probability and Queues (1987), 2nd ed., to be published (Springer, Berlin, 2002).

    Google Scholar 

  5. S. Asmussen, Extreme value theory for queues via cycle maxima, Extremes 1 (1998) 137-168.

    Google Scholar 

  6. S. Asmussen, Subexponential asymptotics for stochastic processes: Extremal behaviour, stationary distributions and first passage probabilities, Ann. Appl. Probab. 8 (1998) 354-374.

    Google Scholar 

  7. S. Asmussen, Ruin Probabilities (World Scientific, Singapore, 2000).

    Google Scholar 

  8. S. Asmussen, P. Frantz, M. Jobmann and H.-P. Schwefel, Large deviations and fast simulation of transient buffer overflow probabilities for queues, Stochastic Process. Appl. (2002) to appear.

  9. S. Asmussen and O. Kella, A multi-dimensional martingale for Markov additive processes and its applications, Adv. in Appl. Probab. 32 (2000) 376-393.

    Google Scholar 

  10. S. Asmussen and O. Kella, On optional stopping of some exponential martingales for Lévy processes with or without reflection, Stochastic Process. Appl. 91 (2001) 47-55.

    Google Scholar 

  11. J. Bertoin, Lévy Processes (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  12. G.L. Choudhury and W. Whitt, Probabilistic scaling for the numerical inversion of non-probability transforms, INFORMS J. Comput. 9(2) (1997) 175-184.

    Google Scholar 

  13. M. Crovella and A. Bestavros, Self-similarity in World Wide Web traffic: Evidence and possible causes, ACM Trans. Networking 5 (1997) 835-846.

    Google Scholar 

  14. C.D. Fuh and T. Lai, Wald's equation, first passage times and moments of ladder variables in Markov random walks, J. Appl. Probab. 35 (1998) 566-580.

    Google Scholar 

  15. P. Glasserman and S.-G. Kou, Limits of first passage times to rare sets in regenerative processes, Ann. Appl. Probab. 5 (1995) 424-445.

    Google Scholar 

  16. B.V. Gnedenko and I.N. Kovalenko, Introduction to Queueing Theory, 2nd ed. (Birkhäuser, Basel, 1989).

    Google Scholar 

  17. M. Greiner, M. Jobmann and L. Lipsky, The importance of power-tail distributions for telecommunication traffic models, Oper. Res. 47 (1999) 313-326.

    Google Scholar 

  18. A. Gut, Stopped Random Walks (Springer, Berlin, 1988).

    Google Scholar 

  19. J. Keilson, A limit theorem for passage times in ergodic regenerative processes, Ann. Math. Statist. 37 (1966) 866-870.

    Google Scholar 

  20. O. Kella and W. Whitt, Useful martingales for stochastic storage processes with Lévy input, J. Appl. Probab. 29 (1992) 396-403.

    Google Scholar 

  21. G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM Series on Statistics and Applied Probability, Vol. 5 (1999).

  22. W. Leland, M. Taqqu, W. Willinger and D. Wilson, On the self-similar nature of Ethernet traffic (extended version), ACM Trans. Networking 2 (1994) 1-15.

    Google Scholar 

  23. L. Lipsky, Queueing Theory: A Linear Algebraic Approach (MacMillan, New York, 1992).

    Google Scholar 

  24. L. Lipsky, P. Fiorini and H.-P. Schwefel, Analytical models of performance in telecommunication systems, based on on-off traffic sources with self-similar behavior, in: 7th Internat. Conf. on Telecommunication Systems Modeling and Analysis, Nashville, 1999.

  25. C.B. Moler and G.W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal. 10 (1973).

  26. G.V. Moustakides, Extension of Wald's first lemma to Markov processes, J. Appl. Probab. 36 (1999) 48-59.

    Google Scholar 

  27. S.M. Ross and S. Seshadri, Hitting time in an M/G/1 queue, J. Appl. Probab. 36 (1999) 934-940.

    Google Scholar 

  28. H.-P. Schwefel and L. Lipsky, Performance results for analytic models of traffic in telecommunication systems, based on multiple ON-OFF sources with self-similar behavior, in: Teletraffic Engineering in a Competitive World, eds. P. Key and D. Smith, Vol. 3A (Elsevier, Amsterdam, 1999) pp. 55-66.

    Google Scholar 

  29. H.-P. Schwefel and L. Lipsky, Impact of aggregated, self-similar ON/OFF traffic on delay in stationary queueing models (extended version), Performance Evaluation 43 (2001) 203-221.

    Google Scholar 

  30. H.-P. Schwefel, L. Lipsky and M. Jobmann, On the necessity of transient performance analysis in telecommunication systems, in: Teletraffic Engineering in the Internet Era, eds. J.M. de Souza, N.L.S. da Fonseca and E.A.S. Silva (Elsevier, Amsterdam, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmussen, S., Jobmann, M. & Schwefel, HP. Exact Buffer Overflow Calculations for Queues via Martingales. Queueing Systems 42, 63–90 (2002). https://doi.org/10.1023/A:1019994728099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019994728099

Navigation