Skip to main content
Log in

Domains and Rafts in Membranes – Hidden Dimensions of Selforganization

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Both biomembranes and biomimetic membranes such as lipid bilayers withseveral components contain intramembrane domains and rafts.Macromolecules, which are anchored to the membrane but have no tendeney tocluster, induce curved nanodomains. Clustering of membrane componentsleads to larger domains which can grow up to a certain maximal size andthen undergo a budding process. The maximal domain size depends on theinterplay of spontaneous curvature, bending rigidity, and line tension.It is argued that this interplay governs the formation of bothclathrin-coated buds and caveolae. Finally, membrane adhesion often leadsto domain formation within the contact zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipowsky, R.: (a) Budding of membranes induced by intramembrane domains, J. Phys. II France 2 (1992), 1825–1840; (b) Domain-induced budding of fluid membranes, Biophys. J. 64 (1993), 1133–1138.

    Google Scholar 

  2. Jülicher, F. and Lipowsky, R.: (a) Domain-induced budding of vesicles, Phys. Rev. Lett. 70 (1993), 2964–2967; (b) Shape transformations of inhomogeneous vesicles with intramembrane domains, Phys. Rev. E 53 (1996), 2670–2683.

    Google Scholar 

  3. Kumar, S., Gompper, G. and Lipowsky, R.: Budding dynamics of multicomponent membranes, Phys. Rev. Lett. 86 (2001), 3911–3914.

    Google Scholar 

  4. Döbereiner, H.-G., Käs, J., Noppl, D., Sprenger, I. and Sackmann, E.: Budding and fission of vesicles, Biophys. J. 65 (1993), 1396–1403.

    Google Scholar 

  5. Bradley, A.J., Maurer-Spurej, E., Brooks, D.E. and Devine, D.V.: Unusual electrostatic effects on binding of C1q to anionic liposomes: Role of anionic phospholipid domains and their line tension, Biochemistry 38 (1999), 8112–1823.

    Google Scholar 

  6. Holopainen, J.M., Angelova, M.I. and Kinnunen, P.K.J.: Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes, Biophys. J. 78 (2000), 830–838.

    Google Scholar 

  7. Schekman, R. and Orci, L.: Coat proteins and vesicle budding, Science 271 (1996), 1526–1533.

    Google Scholar 

  8. Simons, K. and Ikonen, E.: Functional rafts in cell membranes, Nature 387 (1997), 569–572.

    Google Scholar 

  9. Jacobson, K. and Dietrich, C.: Looking at lipid rafts?, Trends in Cell Biology 9 (1999), 87–91.

    Google Scholar 

  10. Huttner, W.B. and Zimmerberg, J.: Implications of lipid microdomains formembrane curvature, budding and fission, Curr. Opinion Cell Biol. 13 (2001), 478–484.

    Google Scholar 

  11. Thompson, T.E. and Tillack, T.W.: Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells, Ann. Rev. Biophys. Biophys. Chem. 14 (1985), 361–386.

    Google Scholar 

  12. Sek Wen Hui: The spatial distribution of cholesterol in membranes, in: P.L. Yeagle (ed.), Biology of cholesterol, CRC Press, Boca Raton, 1988.

    Google Scholar 

  13. Scheiffele, P., Rietveld, A., Wilk, T. and Simons, K.: Influenza viruses select ordered lipid domains during budding from the plasma membrane, J. Biol. Chem. 247 (1999), 2038–2044.

    Google Scholar 

  14. Lu, X. and Silver, J.: Ecotropic murine leukemia virus receptor is physically associated with caveolin and membrane rafts, Virology 276 (2000), 251–258.

    Google Scholar 

  15. Keller, S.L., Pitcher III, W.H., Huestis, W.H. and McConnell, H.M.: Red blood cell lipids form immiscible liquids, Phys. Rev. Lett. 81 (1998), 5019–5022.

    Google Scholar 

  16. Dietrich, C., Bagatolli, L.A., Volovyk, Z.N., Thompson, N.L., Levi, M., Jacobson, K. and Gratton, E.: Lipid rafts reconstituted in model membranes, Biophys. J. 80 (2001), 1417–1428.

    Google Scholar 

  17. Korlach, J., Schwille, P., Webb, W.W. and Feigenson, G.W.: Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy, Proc. Natl. Acad. Sci. USA 96 (1999), 8461–8466.

    Google Scholar 

  18. Bagatolli, L.A. and Gratton, E.: Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles, Biophys. J. 77 (1999), 2090–2101.

    Google Scholar 

  19. Lipowsky, R.: Bending of membranes by anchored polymers, Europhys. Lett. 30 (1995), 197–202.

    Google Scholar 

  20. Hiergeist, C. and Lipowsky, R.: Elastic properties of polymer-decorated membranes, J. Phys. France 6 (1996), 1465–1481.

    Google Scholar 

  21. Breidenich, M., Netz, R. and Lipowsky, R.: The shape of polymer-decorated membranes, Europhys. Lett. 49 (2000), 431–437.

    Google Scholar 

  22. Hiergeist, C., Indrani, V.A. and Lipowsky, R.: Membranes with anchored polymers at the adsorption transition, Europhys. Lett. 36 (1996), 491–496.

    Google Scholar 

  23. Breidenich, M., Netz, R. and Lipowsky, R.: Adsorption of polymers anchored to membranes, Eur. Phys. J. E 5 (2001), 403–414.

    Google Scholar 

  24. Decher, G., Kuchinka, E., Ringsdorf, H., Venzmer, J., Bitter-Suermann, D. and Weisgerber, C.: Interaction of amphiphilic polymers with model membranes, Angew. Makromol. Chem. 166/167 (1989), 71–80.

    Google Scholar 

  25. Simon, J., Kühner, M., Ringsdorf, H. and Sackmann, E.: Polymer-induced shape changes and capping in giant liposomes, Chem. Phys. Lipids 76 (1995), 241–258.

    Google Scholar 

  26. Döbereiner, H.G., Lehmann, A., Goedel, W., Selchow, O. and Lipowsky, R.: Membrane curvature induced by sugar and polymer solutions, in: B. Mulder, C.F. Schmidt and V. Vogel (eds.), Materials Science of the Cell 489, of Mat. Res. Soc. Symp. Proc., pp. 101–106, MRS, Warrendale, Pennsylvania, 1998.

    Google Scholar 

  27. Frette, V., Tsafrir, I., Guedeau-Boudeville, M.A., Jullien, L., Kandel, D. and Stavans, J.: Coiling of cylindrical membrane stacks with anchored polymers, Phys. Rev. Lett. 83 (1999), 2465–2468.

    Google Scholar 

  28. Jakobs, B., Sottmann, T., Strey, R., Allgaier, J., Willner, L. and Richter, D.: Amphiphilic block copolymers as efficiency boosters for microemulsions, Langmuir 15 (1999), 6707–6711.

    Google Scholar 

  29. Tsafrif, I., Guedeau-Boudeville, M.A., Kandel, D. and Stavans, J.: Coiling instability of multilamellar membrane tubes with anchored polymers, Phys. Rev. E 63 (2001), 031603/1–11.

    Google Scholar 

  30. Gompper, G., Edo, H., Mihailescu, M., Allgaier, J., Monkenbusch, M., Richter, D., Jakobs, B., Sottmann, T. and Strey, R.: Measuring bending rigidity and spatial renormalization in bicontinuous microemulsions, Europhys. Lett. (in press).

  31. Dimova, R., Döbereiner, H.G. and Lipowsky, R.: In preparation.

  32. Lipowsky, R., Döbereiner, H.G., Hiergeist, C. and Indrani, V.: Membrane curvature induced by polymers and colloids, Physica A 249 (1998), 536–543.

    Google Scholar 

  33. Duwe, H.P., Käs, J. and Sackmann, E.: Bending elastic moduli of lipid bilayers: Modulation by solutes, J. Phys. France 51 (1990), 945–962.

    Google Scholar 

  34. Benvegnu, D.J. and McConnell, H.M.: Line tension between liquid domains in lipid monolayers, J. Phys. Chem. 96 (1992), 6820–6824.

    Google Scholar 

  35. Goetz, R., Gompper, G. and Lipowsky, R.: Mobilitiy and elasticity of self-assembled membranes, Phys. Rev. Lett. 82 (1999), 221–224.

    Google Scholar 

  36. Pralle, A., Keller, P., Florin, E.L., Simons, K. and Hörber, J.K.H.: Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells, J. Cell Biol. 148 (2000), 997–1007.

    Google Scholar 

  37. Brown, D.A. and London, E.: Structure and origin of ordered lipid domains in biological membranes, J. Membrane Biol. 164 (1998), 103–114.

    Google Scholar 

  38. Harder, T., Scheiffele, P., Verkade, P. and Simons, K.: Lipid domain structure of the plasma membrane revealed by patching of membrane components, J. Cell. Biol. 141 (1998), 929–942.

    Google Scholar 

  39. Nardi, J., Feder, T., Bruinsma, R. and Sackmann, E.: Electrostatic adhesion between fluid membranes: phase separation and blistering, Europhys. Lett. 37 (1997), 371–376.

    Google Scholar 

  40. Albersdörfer, A., Feder, T. and Sackmann, E.: Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: A model membrane study, Biophys. J. 73 (1997), 245–257.

    Google Scholar 

  41. Braun, D. and Fromherz, P.: Fluorescence interferometry of neuronal cell adhesion on microstructured silicon, Phys. Rev. Lett. 81 (1998), 5241–5244.

    Google Scholar 

  42. Lipowsky, R.: Adhesion of membranes via anchored stickers, Phys. Rev. Lett. 77 (1996), 1652–1655. 210 R. LIPOWSKY

    Google Scholar 

  43. Weikl, T., Netz, R. and Lipowsky, R.: Unbinding transitions and phase separation of multicomponent membranes, Phys. Rev. E 62 (2000), R45–R48.

    Google Scholar 

  44. Bruinsma, R., Behrisch, A. and Sackmann, E.: Adhesive switching of membranes: Experiment and theory, Phys. Rev. E 61 (2000), 4253–4267.

    Google Scholar 

  45. Komura, S. and Andelman, D.: Adhesion-induced lateral phase separation in membranes, Eur. Phys. J. E 3 (2000), 259–271.

    Google Scholar 

  46. Weikl, T. and Lipowsky, R.: Adhesion-induced phase behavior of multicomponent membranes, Phys. Rev. E 64 (2001), 11903–11915.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipowsky, R. Domains and Rafts in Membranes – Hidden Dimensions of Selforganization. Journal of Biological Physics 28, 195–210 (2002). https://doi.org/10.1023/A:1019994628793

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019994628793

Navigation