Skip to main content
Log in

A Reactor-Type Biosensor Based on Rhodococcus erythropolis HL PM-1 Cells for Detecting 2,4-Dinitrophenol

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A model of a reactor-type biosensor based on the Rhodococcus erythropolis HL PM-1 was developed for amperometric detection of 2,4-dinitrophenol (2,4-DNP). The effects of the matrix material (agar and calcium alginate gels, ceramic support, and cellulose powder) on the biosensor signal concentration dependence, detection time, and biosensor stability were studied. In the case of bacterial cells immobilized on cellulose powder, the lower limit of 2,4-DNP detection was 20 μM and the time of single analysis, the biosensor recovery included, was 30–50 min. In the continuous detection mode, the biosensor response was maintained at a stable level without biosensor inactivation for ten days. The biosensor can be used as an element of a complex analytical system for detecting nitroaromatic compounds in samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Marvin-Sikkema, F.D. and de Bont, J.A.M., Appl. Microbiol. Biotechnol., 1994, vol. 42, no. 4, pp. 499-507.

    Google Scholar 

  2. Hallas, L.E. and Alexander, M., Appl. Environ. Microbiol., 1983, vol. 45, no. 4, pp. 1234-1241

    Google Scholar 

  3. Mel'nikov, N.N., Khimiya i tekhnologiya pestitsidov (Pesticides Chemistry and Technology), Moscow: Khimiya, 1974, p. 141.

    Google Scholar 

  4. Singirtsev, I.N., Krest'yaninov, V.Yu., and Korzhenevich, V.I., Prikl. Biokhim. Mikrobiol., 1994, vol. 30, no. 2, pp. 250-254.

    Google Scholar 

  5. Lenke, H., Pieper, D.H., Bruhn, C., and Knackmuss, H.-J., Appl. Environ. Microbiol., 1992, vol. 58, no. 9, pp. 2928-2932.

    Google Scholar 

  6. Emelianova, E.V. and Reshetilov, A.N., Proc. Biochem., 2002, vol. 37, no. 4, pp. 683-692.

    Google Scholar 

  7. Nomura, Y., Ikebukuro, K., Yokoyama, K., et al., Anal. Lett., 1994, vol. 27, no. 35, pp. 3095-3108.

    Google Scholar 

  8. Reshetilov, A.N., Iliasov, P.V., Knackmuss, H.-J., and Boronin, A.M., Anal. Lett., 2000, vol. 33, no. 1, pp. 29-41.

    Google Scholar 

  9. Lenke, H. and Knackmuss, H.-J., Appl. Environ. Microbiol., 1992, vol. 58, no. 9, pp. 2933-2937.

    Google Scholar 

  10. Lenke, H., Pieper, D.H., Bruhn, C., and Knackmuss, H.-J., Appl. Environ. Microbiol., 1992, vol. 58, no. 9, pp. 2928-2932.

    Google Scholar 

  11. Bruhn, C., Lenke, H., and Knackmuss, H.-J., Appl. Environ. Microbiol., 1987, vol. 53, no. 1, pp. 208-210.

    Google Scholar 

  12. Immobilized Cells and Enzymes, A Practical Approach, Woodward, J., Ed., Great Britain, Oxford, IRL, 1985. Translated under the title Immobilizovannye kletki i fermenty. Metody, Moscow: Mir, 1988.

    Google Scholar 

  13. Novikov, Yu.V., Lastochkina, K.O., and Boldina, Z.N., Metody issledovaniya kachestva vody vodoemov (Quality of Natural Water, A Practical Approach), Moscow: Meditsina, 1990, pp. 80-82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitova, A.E., Kuvichkina, T.N., Il'yasov, P.V. et al. A Reactor-Type Biosensor Based on Rhodococcus erythropolis HL PM-1 Cells for Detecting 2,4-Dinitrophenol. Applied Biochemistry and Microbiology 38, 500–505 (2002). https://doi.org/10.1023/A:1019989023130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019989023130

Keywords

Navigation