Skip to main content
Log in

Detection of four different OH-groups in ground kaolinite with controlled-rate thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behaviour of mechanochemically treated kaolinite has been investigated under dynamic and controlled rate thermal analysis (CRTA) conditions. Ten hours of grinding of kaolinite results in the loss of the d(001) spacing and the replacement of some 60% of the kaolinite hydroxyls with water. Kaolinite normally dehydroxylates in a single mass loss stage between 400 and 600°C. CRTA technology enables the dehydroxylation of the ground mineral to be observed in four overlapping stages at 385, 404, 420 and 433°C under quasi-isobaric condition in a self-generated atmosphere. It is proposed that mechanochemical treatment of the kaolinite causes the localization of the protons when the long range ordering is lost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Levy, Energy Fuels, 4 (1990) 146.

    Google Scholar 

  2. J. H. Levy and H. J. Hurst, Fuel, 72 (1993) 873.

    Google Scholar 

  3. J. S. Chillingly and S. J. Day, Fuel, 69 (1990) 1145.

    Google Scholar 

  4. G. W. Brindley and J. Lemmatize, Thermal oxidation and reduction of clay minerals. In: Newman, A.C.D. (Ed.), Chemistry of Clay and Clay Minerals, Longman Scientific and Technical, England, Essex 1987, p. 319.

    Google Scholar 

  5. G. C. Maiti and F. Freund, Clay Miner., 16 (1981) 395.

    Google Scholar 

  6. R. Pampuch, Bull. G. Fran. Arg., 23 (1971) 107.

    Google Scholar 

  7. A. A. Ogloza and V. M. Malhotra, Phys. Chem. Miner., 16 (1989) 379.

    Google Scholar 

  8. J. J. Fripiat and F. Toussaint, Nature, 186 (1960) 627.

    Google Scholar 

  9. J. L. White, A. Laycock and M. Cruz, Bull. G. Fran. Arg., 22 (1970) 157.

    Google Scholar 

  10. S. Yariv and H. Cross, Geochemistry of Colloid Systems for Earth Scientists, Springer-Verlag, Berlin 1979, p. 220.

    Google Scholar 

  11. R. L. Frost, Clay Miner., 43 (1995) 191.

    Google Scholar 

  12. R. L. Frost and A. M. Vassallo, Clays Clay Miner., 44 (1996) 635.

    Google Scholar 

  13. U. Johansson, R. L. Frost, W. Forsling and J. T. Kloprogge, Appl. Spectrosc., 52 (1998) 1277.

    Google Scholar 

  14. R. L. Frost and J. T. Kloprogge, J. Raman Spectrosc., 31 (2000) 415.

    Google Scholar 

  15. R. L. Frost and J. T. Kloprogge, Appl. Spectrosc., 53 (1999) 1610.

    Google Scholar 

  16. G. W. Brindley, K. Chih-Chun, J. L. Harrison, M. Lipsiscas and R. Raythatha, Clays Clay Miner., 34 (1986) 233.

    Google Scholar 

  17. D. R. Collins and C. R. A. Catlow, Acta Crystallogr., B47 (1991) 678.

    Google Scholar 

  18. R. F. Giese, Kaolin minerals: structures and stabilities. Reviews in Mineralogy Vol. 19., Hydrous Phyllosilicates, Bailey, S. W. (Ed.), Mineralogical Society of America Book Crafters Inc. Chelsea, Michigan 1988, Chapter 3.

    Google Scholar 

  19. C. A. Hess and V. R. Saunders, J. Phys. Chem., 96 (1992) 4367.

    Google Scholar 

  20. D. Bougeard, K. S. Smirnov and E. Geidel, J. Phys. Chem., B104 (2000) 9210.

    Google Scholar 

  21. F. Paulik, Special Trends in Thermal Analysis, Wiley, Chichester 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kristóf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristóf, J., Frost, R.L., Kloprogge, J.T. et al. Detection of four different OH-groups in ground kaolinite with controlled-rate thermal analysis. Journal of Thermal Analysis and Calorimetry 69, 77–83 (2002). https://doi.org/10.1023/A:1019981505712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019981505712

Navigation