Skip to main content
Log in

Delayed Changes in Regional Brain Energy Metabolism following Cerebral Concussion in Rats

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) results in an acute altered metabolic profile of brain tissue which resolves within hours of initial insult and yet some of the functional deficits and cellular perturbations persist for days. It is hypothesized that a delayed change in energy status does occur and is a factor in the neural tissue's ability to survive and regain function. Regional metabolic profile and glucose consumption were determined at either 1 or 3 days following two different intensities of parasagittal fluid-percussion (F-P). A significant decrease in both 1CMRgluc and levels of ATP and P-creatine was evident in the hemisphere ipsilateral to the trauma at 1 day after the insult. The effect was greater in the cortical than the subcortical regions and was more pronounced at the higher trauma intensity. Normalization of glucose consumption and energy levels was essentially complete by 3 days. It would appear that the delayed metabolic changes at 1 day postinsult cannot be explained by a secondary ischemia since the changes in the metabolite profile do not elicit an increase in the consumption of glucose. These changes in energy metabolites may account for and contribute to the chronic neurological deficits following TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Andersen, B., and Marmarou, A. (1992). Post traumatic selective stimulation of glycolysis. Brain Res. 585:184-189.

    Google Scholar 

  • Beer, R., Franz, G., Krajewski, S., Pike, B.R., Hayes, R.L., Reed, J.C., Wang, K.K., Klimmer, C., Schmutzhard, E., Poewe, W., and Kampfl, A. (2001). Temporal and spatial profile of caspase 8 expression and proteolysis after experimental traumatic brain injury. J. Neurochem. 78:862-873.

    Google Scholar 

  • Bergsneider, M., Hovda, D.A., Shalmon, E., Kelly, D.F., Vespa, P.M., Martin, N.A., Phelps, M.E., McArthur, D.L., Caron, M.J., Kraus, J.F., and Becker, D.P. (1997). Cerebral hyperglycolysis following severe traumatic brain injury in humans: A positron emission tomography study. J. Neurosurg. 86:241-251.

    Google Scholar 

  • Buczek, M., Ratcheson, R.A., Lust, W.D., McHugh, M., and Pappius, H.M. (1991). Effects of focal cortical freezing lesion on regional energy metabolism. J. Cereb. Blood Flow Metab. 11:845-851.

    Google Scholar 

  • Demediuk, P., Faden, A.I., Romhanyi, R., Vink, R., and McIntosh, T.K. (1988). Traumatic brain injury in the rat: Effects on lipid metabolism, tissue magnesium, and water content. J. Neurotrauma 5:105-119.

    Google Scholar 

  • DeSalles, A., Muizelaar, J., and Young, H. (1987). Hyperglycemia, cerebrospinal fluid lactic acidosis, and cerebral blood flow in severely head-injured patients. Neurosurgery 21:45-51.

    Google Scholar 

  • Dixon, C., Lyeth, B., Pavlishock, J., Fidling, R.L., Hamm, R.J., Marmarou, A., Young, H.F., and Hayes, R.L. (1987). A fluid percussion model of experimental brain injury in the rat. J. Neurosurg. 67:110-119.

    Google Scholar 

  • Faden, A., Demediuk, P., Panter, S., and Vink, R. (1989). The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798-800.

    Google Scholar 

  • Feuerstein, G., Wang, X., and Barone, F. (1998). The role of cytokines in the neuropathology of stroke and neurotrauma. Neuroimmunomodulation 5:143-159.

    Google Scholar 

  • Fineman, I., Hovda, D.A., Smith, M., Yoshino, A., and Becker, D.P. (1993). Concussive brain injury is associated with a prolonged accumulation of calcium: A 45Ca autoradiographic study. Brain Res. 624:94-102.

    Google Scholar 

  • Folbergrova, J., Zhao, Q., and Katsura, K. (1995). N-tert-Butyl-a-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc. Natl. Acad. Sci. USA 92:5057-5061.

    Google Scholar 

  • Ginsberg, M., Reivich, M., Giandomenico, A., and Greenberg, J. (1977). Local glucose utilization in acute focal cerebral ischemia: Local dysmetabolism and diaschisis. Neurology 27:1042-1048.

    Google Scholar 

  • Ginsberg, M.D., Zhao, W., Alonso, O.F., Loor-Estades, J.Y., Dietrich, W.D., and Busto, R. (1997). Uncoupling of local cerebral glucose metabolism and blood flow after acute fluidpercussion injury in rats. Am. J. Physiol. 272:H2859-H2868.

    Google Scholar 

  • Harris, L.K., Black, R.T., Golden, K.M., Reeves, T.M., Povlishock, J.T., and Phillips, L.L. (2001). Traumatic brain injury-induced changes in gene expression and functional activity of mitochondrial cytochrome C oxidase. J. Neurotrauma 18:993-1009.

    Google Scholar 

  • Hill-Felberg, S.J., McIntosh, T.K., Oliver, D.L., Raghupathi, R., and Barbarese, E. (1999). Concurrent loss and proliferation of astrocytes following lateral fluid percussion brain injury in the adult rat. J. Neurosci. Res. 57:271-279.

    Google Scholar 

  • Hovda, D.A., Lee, S.M., Smith, M.L., Von Stuck, S., Bergsneider, M., Kelly, D</del>., Shalmon, E., Martin, N., Caron, M., and Mazziotta, J. (1995). The neurochemical and metabolic cascade following brain injury: Moving from animal models to man. J. Neurotrauma 12:903-906.

    Google Scholar 

  • Hovda, D.A., Yoshino, A., Kawamata, T., Katayama, Y., and Becker, D.P. (1991). Diffuse prolonged depression of cerebral oxidative metabolism following concussive brain injury in the rat: A cytochrome oxidase histochemistry study. Brain Res. 567:1-10.

    Google Scholar 

  • Ikeda, Y., and Long, M. (1990). The molecular basis of brain injury and brain edema: The role of oxygen free radicals. Neurosurgery 27:1-11.

    Google Scholar 

  • Jenkins, L.W., Moszynski, K., Lyeth, B.G., Lewelt, W., DeWitt, D.S., Allen, A., Dixon, C.E., Povlishock, J.T., Majewski, T.J., and Clifton, G.L. (1989). Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: The use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Res. 477:211-224.

    Google Scholar 

  • Kontos, H., and Wei, E. (1986). Superoxide production in experimental brain injury. J. Neurosurg. 64:803-807.

    Google Scholar 

  • Lowry, O., and Passonneau, J. (1972). A Flexible System of Enzymatic Analysis, Academic Press, New York.

    Google Scholar 

  • Lust,W.D., Feussner, G.K., Barbehenn, E.K., and Passonneau, J.V. (1981). The enzymatic measurement of adenine nucleotides and P-creatine in picomole amounts. Anal. Biochem. 110:258-266.

    Google Scholar 

  • Lust, W.D., Taylor, C., Pundik, S., Selman, W., and Ratcheson, R. (in press). Ischemic cell death: Dynamics of delayed secondary energy failure during reperfusion following focal ischemia. Metab. Brain Dis.

  • Marmarou, A., Holdaway, R., Ward, J.D., Yoshida, K., Choi, S.C., Muizelaar, J.P., and Young, H.F. (1993). Traumatic brain tissue acidosis: Experimental and clinical studies. Acta Neurochir. Suppl. (Wien.) 57:160-164.

    Google Scholar 

  • McIntosh, T.K. (1994). Neurochemical sequelae of traumatic brain injury: Therapeutic implications. Cerebrovasc. Brain Metab. Rev. 6:109-162.

    Google Scholar 

  • McIntosh, T.K. (1992). Pharmacologic strategies in the treatment of experimental brain injury. J. Neurotrauma. 9(Suppl. I): 201-209.

    Google Scholar 

  • McIntosh, T., Faden, A., Bendall, M., and Vink, R. (1987). Traumatic brain injury in the rat: Alterations in Brain Lactate and pH as characterized by H-1 and P-31 nuclear magnetic resonance. J. Neurochem. 49:1530-1540.

    Google Scholar 

  • McIntosh, T.K., Vink, R., Noble, L., Yamakami, I., Fernyak, S., Soares, H., and Faden, A.L. (1989). Traumatic brain injury in the rat: Characterization of a lateral fluid-percussion model. Neuroscience 28:233-244.

    Google Scholar 

  • Morganti-Kossmann, M.C., Rancan, M., Otto, V.I., Stahel, P.F., and Kossmann, T. (2001). Role of cerebral inflammation after traumatic brain injury: A revisited concept. Shock 16:165-177.

    Google Scholar 

  • Nawashiro, H., Shima, K., and Chigasaki, H. (1995). Immediate cerebrovascular responses to closed head injury in the rat. J. Neurotrauma 12:189-197.

    Google Scholar 

  • Pappius, H. (1981). Local cerebral glucose utilization in thermally traumatized rat brain. Ann. Neurol. 9:484-491.

    Google Scholar 

  • Pierce, J.E., Smith, D.H., Trojanowski, J.Q., and McIntosh, T.K. (1998). Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience 87:359-369.

    Google Scholar 

  • Ponten, U., Ratcheson, R., Salford, L., and Siesjo, B. (1973). Optimal freezing conditions for cerebral metabolites in rats. J. Neurochem. 21:1121-1126.

    Google Scholar 

  • Renuka Prasad, M., Ramaiah, C., and McIntosh, T. (1994). Regional levels of lactate and norepinephrine after experimental brain injury. J. Neurochem. 63:1094.

    Google Scholar 

  • Robertson, C., Grossman, R., Goodman, J., and Narayan, R. (1987). The predictive value of cerebral anaerobic metabolism with cerebral infarction after head injury. J. Neurosurg. 67:361-368.

    Google Scholar 

  • Shapira, Y., Setton, D., Artru, A., and Sholhami, E. (1993). Blood brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth. Analg. 77:141-148.

    Google Scholar 

  • Siesjö, B. (1993). Basic mechanisms of traumatic brain damage. Ann. Emerg. Med. 22:959-969.

    Google Scholar 

  • Siesjo, B.K., Elmer, E., Janelidze, S., Keep, M., Kristian, T., Ouyang, Y.B., and Uchino, H. (1999). Role and mechanisms of secondary mitochondrial failure. Acta Neurochir. Suppl. (Wien.) 73:7-13.

    Google Scholar 

  • Siesjö, B., and Siesjö, P. (1996). Mechanisms of secondary brain damage. Anaesthesiology 13:247-268.

    Google Scholar 

  • Soares, H., Thomas, M., Cloherty, K., and McIntosh, T. (1992). Development of prolonged focal cerebral edema and regional cation changes following experiment brain injury in rat. J. Neurochem. 58:1845-1852.

    Google Scholar 

  • Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., and Shinohara, M. (1977). The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897-916.

    Google Scholar 

  • Trivedi, B., and Danforth, W. (1966). Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241:4110-4112.

    Google Scholar 

  • Vink, R., Faden, A., and McIntosh, T. (1987a). Changes in cellular bioenergetic state following graded traumatic brain injury in rats: Determination by phosphorus 31 magnetic resonance spectroscopy. J. Neurotrauma 5:315-329.

    Google Scholar 

  • Vink, R., McIntosh, T.K., Weiner, M.W., and Faden, A.I. (1987b). Effects of traumatic brain injury on cerebral high-energy phosphates and pH: A 31P magnetic resonance spectroscopy study. J. Cereb. Blood Flow Metab. 7:563-571.

    Google Scholar 

  • Yamakami, I., and McIntosh, T. (1991). Alterations in regional cerebral blood flow following brain injury in the rat. J. Cereb. Blood Flow Metab. 11:655-660.

    Google Scholar 

  • Yoshino, A., Hovda, D.A., Kawamata, T., Katayama, Y., and Becker, D.P. (1991). Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: Evidence of a hyper-and subsequent hypometabolic state. Brain Res. 561:106-119.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buczek, M., Alvarez, J., Azhar, J. et al. Delayed Changes in Regional Brain Energy Metabolism following Cerebral Concussion in Rats. Metab Brain Dis 17, 153–167 (2002). https://doi.org/10.1023/A:1019973921217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019973921217

Navigation