Skip to main content
Log in

Mode Structure and the Envelope of a Short Pulse in a Graded-Index Optical Fiber with a Longitudinal Inhomogeneity and a Spatial Bending

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We consider propagation of a short optical pulse in an optical fiber whose refractive index is strongly dependent on the radial coordinate and is weakly dependent on the longitudinal coordinate with allowance for the possible weak spatial bending of the fiber axis. The three-dimensional nonlinear wave equation modelling the pulse propagation is solved asymptotically with respect to a small parameter specifying the order of magnitude of the pulse amplitude. A relationship between the propagating modes and the eigenvalues and eigenfunctions of the singular Sturm-Liouville problem is established. The pulse propagation is shown to have three scales: the high-frequency carrier is modulated by the envelope which evolves in a two-scale manner and is described by a nonlinear Schrödinger equation whose coefficients depend on the longitudinal coordinate. The transverse distribution of the wave field and the envelope soliton are obtained in terms of elementary functions for several types of transverse and longitudinal inhomogeneities of the fiber. The possibility of controlling the pulse parameters by varying the transverse and longitudinal inhomogeneities of the fiber is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. P. Agrawal, Nonlinear Fiber Optics [Russian translation], Mir, Moscow (1996).

    Google Scholar 

  2. R. H. Stolen, Proc. IEEE, 68, No. 10, 1232 (1980).

    Google Scholar 

  3. A. Hasegawa and F. Tappert, Appl. Phys. Lett., 23, No. 3. 142 (1973).

    Google Scholar 

  4. W. A. Gambling, H. Matsumura, and C. M. Ragdale, Microwaves, Optics, and Acoustics, 3, No. 6, 239 (1979).

    Google Scholar 

  5. C. Lin, A.Tomita, A. R. Tynes, P. P. Glodis, and D. L. Philen, Electron. Lett., 18, No. 20, 882 (1982).

    Google Scholar 

  6. L. G. Cohen, W. L. Mammel, and S. J. Jang, Electron. Lett., 18, No. 24, 1023 (1982).

    Google Scholar 

  7. M. Jain and N. Tzoar, J. Appl. Phys., 49, No. 9, 4649 (1978).

    Google Scholar 

  8. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short-Wave Di.raction Problems: The Method of Standard Problems [in Russian], Nauka, Moscow (1972)

    Google Scholar 

  9. V. M. Babich, V. S. Buldyrev, and I. A. Molotkov, Spatio-Temporal Ray Method: Linear ans Nonlinear Waves [in Russian], Leningrad Univ. Press, Leningrad (1985).

    Google Scholar 

  10. G. V. Permitin, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 16, No. 2, 254 (1973).

    Google Scholar 

  11. I. G. Kondrat'yev, G. V. Permitin, and A. I. Smirnov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 23, No. 10, 1195 (1980).

    Google Scholar 

  12. I. A. Molotkov, S. A. Vakulenko, and M. A. Bisyarin, Nonlinear Localized Wave Processes [in Russian], Yanus-K, Moscow (1999).

    Google Scholar 

  13. B. A. Dybrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods and Applications [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  14. S. N. Vlasov and S. N. Gurbatov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 19, No. 8, 1149 (1976).

    Google Scholar 

  15. A. Hasegawa, in: J. R. Taylor, ed., Optical Solitons-Theory and Experiment, Cambridge Univ. Press, Cambridge, (1992), p. 1.

    Google Scholar 

  16. I. N. Sisakyan and A. B. Shvartsburg, Dokl. Akad. Nauk SSSR, 269, No. 1, 105 (1983).

    Google Scholar 

  17. N. S. Erokhin and R. Z. Sagdeev, Zh. Éksp. Teor. Fiz., 83, No. 1, 128 (1982).

    Google Scholar 

  18. D. H. Auston, Topics in Applied Physics, Springer, Berlin, Heidelberg, New York (1977), Vol. (18), Ultrashort Light Pulses. Picosecond Techniques and Applications, ed. S. L. Shapiro, p. 123.

    Google Scholar 

  19. E. A. Coddington and N. Levinson, Theory of Ordinary Di.erential Equations, McGraw-Hill, New York (1955).

    Google Scholar 

  20. E. S. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Di.erential Equations, Clarendon Press, Oxford (1962).

    Google Scholar 

  21. M. A. Bisyarin, Vestnik LGU, Ser. Fiz.-Khim., No. 2, 80 (1989).

  22. M. A. Bisyarin, Zap. Nauchn. Sem. LOMI, 173, 42 (1988).

    Google Scholar 

  23. T. I. Lakoba and G. P. Agrawal, J. Opt. Soc. Am. B, 16, No. 9, 1332 (1999).

    Google Scholar 

  24. T. Schäfer, V. Mezentsev, K. H. Spatschek, and S. K. Turitsyn, Proc. Roy. Soc. Lond. A, 457, No. 2006, 273 (2001).

    Google Scholar 

  25. K. Rottwitt, B. Hermann, J. H. Povlsen, and J. N. Elgin, J. Opt. Soc. Am. B, 12, No. 7, 1307 (1955).

    Google Scholar 

  26. A. Desyatnikov, A. Maimistov, and B. Malomed, Phys. Rev. E, 61, No. 3, 3107 (2000).

    Google Scholar 

  27. E. M. Gromov and V. I. Talanov, Zh. Éksp. Teor. Fiz., 110, No. 1, 137 (1996).

    Google Scholar 

  28. M. A. Bisyarin and I. A. Molotkov, Izv. Rossiisk. Akad. Nauk, Ser. Fiz., 65, No. 6, 876 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisyarin, M.A., Molotkov, I.A. Mode Structure and the Envelope of a Short Pulse in a Graded-Index Optical Fiber with a Longitudinal Inhomogeneity and a Spatial Bending. Radiophysics and Quantum Electronics 45, 471–480 (2002). https://doi.org/10.1023/A:1019968702600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019968702600

Keywords

Navigation