Skip to main content
Log in

Heat capacity of hafnium mononitride from temperatures of 5 to 350 K: An estimation procedure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Measurements of the heat capacity by quasi-adiabatic, intermittent energy increments from 5 to 350 K show small high heat-capacity anomalies near 7 and 10 K which are attributed to superconducting transitions seen by magnetic measurements on the same carefully synthesized and well-characterized sample of (Hf0.934Zr0.057)(N0.97). Although no previous heat capacity measurements over the cryogenic region are known, the estimated 298.15 K standard entropy values (S/R) vary in the literature from about 200 per cent higher to 5 per cent lower than our measured value of (5.28±0.01)R−1 when the formula is represented as above. A simple scheme to represent and predict values based on both molar volumes and atomic masses for related materials is presented which seems more reliable on a limited sample than do others despite the intrusion of lanthanide contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Karlsson, R. P. Shimshock, B. O. Seraphin and J. C. Haygarth, Physica Scripta, 25 (1982) 775.

    Google Scholar 

  2. W. M. Latimer, J. Amer. Chem. Soc., 43 (1921) 818.

    Google Scholar 

  3. K. K. Kelley and E. G. King, The Metallurgy of Hafnium, D. T. Thomas and E. T. Hayes; Eds U. S. Atomic Energy Commission 1961, p. 323.

  4. P. J. Spencer, Chapter in Hafnium: Physico-Chemical Properties of its Compounds and Alloys, Thermochemical Properties, K. L. Komarek; Ed., Atomic Energy Rev. Spec. Issue No. 8, IAEA, Vienna 1981, p. 5.

    Google Scholar 

  5. L. B. Pankratz, J. M. Stuve and N. A. Gokcen, Thermodynamic Data for Mineral Technology, USBM Bulletin 677, U.S. Department of the Interior 1984, p. 254.

  6. I. Barin, Thermochemical Data of Pure Substances, VCH; Weinheim 1995, p. 817.

    Google Scholar 

  7. G. Grimvall, High Temperatures-High Pressures, 17 (1985) 607.

    Google Scholar 

  8. E. Rudy and F. Benesovsky, Montash. Chem., 92 (1961) 415.

    Google Scholar 

  9. L. E. Toth, Transition Metal Carbides and Nitrides, Vol. 9 of Refractory Material Sciences.

  10. W. Lengauer and P. Ettmayer, Proceedings 12th International Plansee Seminar’ 89, Vol. 2, p. 497.

  11. E. F. Westrum, Jr., G. T. Furukawa and J. P. McCullough, Experimental Thermodynamics, Vol. 1, J. P. McCullough and D. W. Scott; Eds, Butterworths, London 1968, p. 133.

    Google Scholar 

  12. E. F. Westrum, Jr., Proceedings NATO Advanced Study Institute on Thermochemistry, A. V. Ribeiro da Silva; Ed., Reidel, New York 1984, p. 745.

    Google Scholar 

  13. J. K. Hulm and B. T. Matthias, Chapter in Superconductor Science, S. Foners and B.B. Schwartz; editors, Plenum Press, New York 1981, p. 34.

    Google Scholar 

  14. T. Willis, Department of Materials Science, University of Wisconsin (Madison), Personal communication (January 1994).

  15. N. Komada and E. F. Westrum, Jr., J. Chem. Thermodyn., 29 (1997) 311.

    Google Scholar 

  16. K. C. Mills, cited by O. Kubaschewski, C. B. Alcock and P. J. Spencer, Materials Thermochemistry, 6th Ed., Pergamon Press, Oxford 1993, p. 172.

    Google Scholar 

  17. Powder Refraction File, Inorganic Phases, © JCPDS International Centre for Powder Diffraction Data, Swarthmore, PA 19081 1981.

  18. R. Hultgren, P. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley and D. D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, OH 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Westrum Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westrum, E.F., Sommers, J.A. Heat capacity of hafnium mononitride from temperatures of 5 to 350 K: An estimation procedure. Journal of Thermal Analysis and Calorimetry 69, 103–112 (2002). https://doi.org/10.1023/A:1019937723458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019937723458

Navigation