Skip to main content
Log in

Crystal Phases of TiO2 Ultrafine Particles Prepared by Laser Ablation of Solid Rods

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Titanium dioxide ultrafine particles (UFPs) are produced by pulsed laser ablation of titanium or titanium dioxide (anatase and rutile) rods in an atmosphere of He or O2/He mixture. The collected UFPs on cellulose membrane filters at the exit of the ablation chamber are analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TiO2 particles produced are composed of very small particles (diameter: 10–50 nm) that are completely anatase, irrespective of the rod material, and relatively large particles (diameter: 100 nm–1 μm) that are a mixture of anatase and rutile. The large particles consist of the direct strip-off fragments coming from the rod surface. The particles obtained from the laser ablation on TiO2 rods in an atmosphere of He contains gray particles that are supposed to be amorphous TiO2 (x < 2). In the presence of O2 in the ablation chamber, these oxygen defects in amorphous TiO2 are stabilized and anatase UFPs are formed. These results suggest that the crystal phase of the products can be controlled by adjusting the rod material and the gases used in the ablation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anpo M., T. Shima, S. Komada & Y. Kubokawa, 1987. Photocatalytic hydrogenation of CH3CCH with H2O on small particle TiO2: Size quantization effects and reaction intermediates. J. Phys. Chem. 91, 4305–4310.

    Google Scholar 

  • Barnes N.R., R. Dat, D.J. Lichtenwalner, A.F. Schreiner, O. Auciello & O.E.Hankins, 1995. Multiband analysis of photoluminescence spectra from electronically excited gas-phase species produced during laser ablation of lead oxide, zirconium oxide, titanium oxide and lead zirconate titanate targets. Chem. Mater. 7, 477–485.

    Google Scholar 

  • Barringer E.A. & H.K. Bowen, 1982. Formation, packing, and sintering of monodisperse TiO2 powders. J. Am. Ceram. Soc. 65, C199.

    Google Scholar 

  • Charpin J., A.J. Burggraafand & L. Cot, 1991. Asurvey of ceramic membranes for separations in liquid and gaseous media. Ind. Ceram. 11, 83–90.

    Google Scholar 

  • Fujishima A. & K. Honda, 1972. Electrochemical photolysis of water at a semi-conductor electrode. Nature 238, 37–38.

    Google Scholar 

  • Grabner G., G. Li, R.M. Quint, R. Quint & N. Getoff, 1991. Pulsed laser-induced oxidation of phenol in acid aqueous TiO2. J. Chem. Soc. Faraday Trans. 87, 1097–1101.

    Google Scholar 

  • Grigoriu C., M. Hirai, K. Nishiura, W. Jiang & K. Yatsui, 2000. Synthesis of nanosized aluminum nitride powders by pulsed laser ablation. J. Am. Ceram. Soc. 83, 2631–2633.

    Google Scholar 

  • Ichihashi T., M. Kato & N. Wada, 1981. Quenched high pressure phase of MnF2 in the gas-evaporated fine particles. J. Phys. Soc. Jpn. 50, 3539–3540.

    Google Scholar 

  • Iida Y. & S. Ozaki, 1961. Grain growth and phase transformation of titanium oxide during calcination. J. Am. Ceram. Soc. 44, 120–127.

    Google Scholar 

  • Juang C.B., H. Cai, M.F. Becker, J.W. Keto & J.R. Brock, 1994. Synthesis of nanometer glass particles by pulsed-laser ablation of microspheres. Appl. Phys. Lett. 65, 40–42.

    Google Scholar 

  • Kormann C., D.W. Bahnemann & M.R. Hofmann, 1988. Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 92, 5196–5201.

    Google Scholar 

  • Kumer K.N.P., K. Keizer, A.J. Burggraaf, T. Okubo, H. Nagamoto & S. Morooka, 1992. Densification of nanostructured titania assisted by a phase transformation. Nature 358, 48–51.

    Google Scholar 

  • Larbot A., J.P. Fabre, C. Guizard & L. Cot, 1989. New inorganic ultrafiltration membranes: Titania and zirconia membranes. J. Am. Ceram. Soc. 72, 257–261.

    Google Scholar 

  • Lillich H., L.E. Aleandri, D.J. Jones, J. Rozière, P. Albers, K. Seibold, A. Freund, V. Zumbach & J. Wolfrum, 1995. Production and characterization of noble metal clusters by laser ablation. J. Phys. Chem. 99, 12413–12421.

    Google Scholar 

  • Shannon R.D., 1964. Phase transformations studies in TiO2 supporting different defect mechanisms in vacuum-reduced and hydrogen-reduced rutile. J. App1. Phys. 35, 3414–3416.

    Google Scholar 

  • Shannon R.D. & J.A. Pask, 1965. Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 48, 391–398.

    Google Scholar 

  • Uhlhorn R.J.R., M.H.B.J. Huis in't Veld, K. Keizer & A.J. Burggraaf, 1992. J Synthesis of ceramic membranes. Part I. Synthesis of non-supported and supported γ-alumina membranes without defacts. Mater. Sci. 27, 527–537.

    Google Scholar 

  • Yatsui K., T. Yukawa, C. Grigoriu, M Hirai & W. Jiang, 2000. Synthesis of ultrafine γ-Al2O3powders by pulsed laser ablation. J. Nanoparticle Res. 2, 75–83.

    Google Scholar 

  • Zaspalis V.T., W. Van Praag, K. Keizer, J.R.H. Ross & A.J. Burggraaf, 1992. Synthesis and characterization of primary alumina, titania and binary membranes. J. Mater. Sci. 27, 1023–1035.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harano, A., Shimada, K., Okubo, T. et al. Crystal Phases of TiO2 Ultrafine Particles Prepared by Laser Ablation of Solid Rods. Journal of Nanoparticle Research 4, 215–219 (2002). https://doi.org/10.1023/A:1019935427050

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019935427050

Navigation