Skip to main content
Log in

Structure and Properties of Nanocrystalline Zinc Films

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We have developed a unique processing technique to fabricate Zinc (Zn) nanocomposites with controlled microstructures. In this method, pulsed laser deposition of Zn in conjunction with a few monolayers of tungsten (W) is used to control the grain size of nanocrystalline composites. The grain size of Zn was controlled by the amount of Zn and the substrate temperature. The Zn islands of lower surface energy nucleate on W-layer of high surface energy, which is also insoluble in Zn resulting in lower interfacial energy. Using this approach, we have fabricated nanocomposites of grain sizes ranging from 30 nm down to 6 nm. The hardness of these nanocrystalline films increases with the decrease in grain size, following approximately Hall–Petch relationship. The most interesting observation is the decrease in hardness below a critical size, which is explained on the basis of grain boundary deformation/sliding. The role of W in grain boundary deformation is of particular interest in strengthening and stabilizing the nanocrystalline composites. The potential of this technique to attain even lower grain sizes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong R., I. Codd, R.M. Douthwaite & N.J. Petch, 1962. Phil. Mag. 7, 45.

    Google Scholar 

  • Conrad H. & J. Narayan, 2000. Scripta Mater. 42, 1025.

    Google Scholar 

  • Gleiter H., 1989. Progress in Materials Science 33, 233.

    Google Scholar 

  • Narayan J., Y. Chen & R.M. Moon, 1981. Phys. Rev. Lett. 46, 1491.

    Google Scholar 

  • Narayan J. & Y. Chen, 1984. Phil. Mag. A49, 475; U.S. Patent #4,376,455(March 15,1983).

    Google Scholar 

  • Narayan J., Y. Chen & K.L. Tsang, 1987. Phil. Mag. A55, 807.

    Google Scholar 

  • Narayan J., 2000. Nanoparticle Res. 2(1), 91.

    Google Scholar 

  • Nieman G.W., J.R. Weertman & R.W. Siegel, 1995. J. Mater. Res. 6, 1012.

    Google Scholar 

  • Oliver W.C. & G.M. Pharr, 1992. J. Mater. Res. I, 1564.

    Google Scholar 

  • Riester L., M. Ferber, J.R. Weertman & R.W. Siegel, 1995. Mater. Sci. Eng. A 204, 1.

    Google Scholar 

  • Scattergood R.O. & C.C. Koch, 1992. Script. Met. 27, 1195.

    Google Scholar 

  • Schiotz J., F.D. DiTolla & K.W. Jacobsen, 1998. Nature 391, 561.

    Google Scholar 

  • Siegel R.W., 1991. Ann. Rev. Mater. Sci. 21, 559.

    Google Scholar 

  • Suryanarayana C., 1995. Int. Mater. Rev. 40(2), 41.

    Google Scholar 

  • Van Swegenhoven H. & A. Caro, 1998. Phys. Rev. B 58, 11246.

    Google Scholar 

  • Vitos L., A.V. Ruban, H.L. Shriver & J. Knollar, 1998. Surf. Sci. 411, 186.

    Google Scholar 

  • Weertman J.R. et al., 1999. MRS Bulletin 24, 44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, J., Venkatesan, R.K. & Kvit, A. Structure and Properties of Nanocrystalline Zinc Films. Journal of Nanoparticle Research 4, 265–269 (2002). https://doi.org/10.1023/A:1019925315398

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019925315398

Navigation