Biochemistry (Moscow)

, Volume 67, Issue 8, pp 889–900 | Cite as

Interaction of Exogenous Hypochlorite or Hypochlorite Produced by Myeloperoxidase +H2 O2 +Cl System with Unsaturated Phosphatidylcholines

  • O. M. PanasenkoEmail author
  • A. N. Osipov
  • J. Schiller
  • J. Arnhold


The interaction between unsaturated phosphatidylcholines and either exogenous or endogenous (produced by the enzyme system involving myeloperoxidase (MPO), H2 O2 ,and Cl) hypochlorite was studied in multilayer liposomes containing oleic, linoleic, and arachidonic acid residues using MALDI TOF mass spectrometry. At pH 7.4, hypochlorite reacts with the double bond of the oleic acid residue in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine producing oleic acid chlorohydrin as the main product. Minor amounts of glycols and epoxides were also detected. The main products of the reaction of hypochlorite with 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine were mono and di chlorohydrins of linoleic acid. The signals of monoglycol, epoxide, and glycol or epoxide containing monochlorohydrin derivatives were also present in the mass spectrum. The main products of the reaction of hypochlorite with 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine were lysophosphatidylcholine (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine) and mono-, di-, and trichlorohydrin. Monoglycol and its derivatives containing one or two chlorohydrin groups were also detected. Along with those, carbonyl compounds (aldehyde and acid) formed as a result of double bond breakage in fifth position of arachidonate were detected. Monochlorohydrin was also found when liposomes comprising 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine were incubated in the presence of enzymatic mixture, MPO +H2 O2 +Cl,at pH 6.0. In the absence of the enzyme or either of its substrates (H2 O2 or Cl) or in the presence of the MPO inhibitor (sodium azide) or hypochlorite scavengers (taurine or methionine), monochlorohydrin formation was not observed. These data confirm the suggestion that just the hypochlorite generated in MPO catalysis provides for chlorohydrin formation. Thus, the use of MALDI TOF mass spectrometry has shown, along with chlorohydrins, glycols and epoxides as the products of hypochlorite interaction with unsaturated phosphatidylcholines at physiological pH. It was first determined that hypochlorite breaks double bonds in polyunsaturated phosphatidylcholine and also causes lysophosphatidylcholine formation.

hypochlorite myeloperoxidase phosphatidylcholine unsaturated lipids chlorohydrin glycol epoxide lysophos-phatidylcholine MALDI TOF (matrix assisted laser desorption/ionization time of flight) mass spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schultz, J., and Kaminker, K. (1962) Arch. Biochem. Biophys., 96, 465–467.Google Scholar
  2. 2.
    Deby-Dupont, G., Deby, C., and Lamy, M. (1999) Intensivmed, 36, 500–513.Google Scholar
  3. 3.
    Kettle, A. J., and Winterbourn, C. C. (1997) Redox Report, 3, 3–15.Google Scholar
  4. 4.
    Morris, J. C. (1966) J. Phys. Chem., 70, 3798–3805.Google Scholar
  5. 5.
    Mayanskii, A. I., and Mayanskii, D. N. (1985) Essays on Neutrophil and Macrophage [in Russian], Nauka, Novosibirsk.Google Scholar
  6. 6.
    Klebanoff, S. J., and Clark, R. A. (1978) The Neutrophil: Function and Clinical Disorders, Elsevier-North Holland, Amsterdam.Google Scholar
  7. 7.
    Dallegri, F., Ballestrero, A., Frumento, G., and Patrone, F. (1985) Immunology, 55, 639–645.Google Scholar
  8. 8.
    Dallegri. F., Ballestrero, A., Ottonello, L., and Patrone, F. (1989) J. Lab. Clin. Med., 114, 502–509.Google Scholar
  9. 9.
    Fliss, H., Menard, M., and Desai, M. (1991) Can. J. Physiol. Pharmacol., 69, 1686–1691.Google Scholar
  10. 10.
    Gorbatenkova, E. A., Artmann, G. M., and Panasenko, O. M. (1999) Biol. Membr. (Moscow), 16, 437–444.Google Scholar
  11. 11.
    Pullar, J. M., Winterbourn, C. C., and Vissers, M. C. (1999) Am. J. Physiol., 277, H1505-H1512.Google Scholar
  12. 12.
    Schraufstatter, I., Hyslop, P. A., Jackson, J. H., and Cochrane, C. G. (1988) J. Clin. Invest., 82, 1040–1050.Google Scholar
  13. 13.
    Van Rensburg, C. E., van Staden, A. M., Anderson, R., and van Rensburg, E. J. (1992) Mutat. Res., 265, 255–261.Google Scholar
  14. 14.
    Schiller, J., Arnhold, J., Grunder, W., and Arnold, K. (1994) Biol. Chem. Hoppe Seyler, 375, 167–172.Google Scholar
  15. 15.
    Govorova, N. Yu., Sharonov, B. P., and Lyzlova, S. N. (1988) Biokhimiya, 53, 2025–2032.Google Scholar
  16. 16.
    Winterbourn, C. C. (1985) Biochim. Biophys. Acta, 840, 204–210.Google Scholar
  17. 17.
    Aruoma, O. I., and Halliwell, B. (1987) Biochem. J., 248, 973–976.Google Scholar
  18. 18.
    Sharonov, B. P., Govorova, N. I., and Lyzlova, S. N. (1989) Biochem. Int., 19, 27–35.Google Scholar
  19. 19.
    Spickett, C. M., Jerlich, A., Panasenko, O. M., Arnhold, J., Pitt, A. R., Stelmaszynska, T., and Schaur, R. J. (2000) Acta Biochim. Polonica, 47, 889–899.Google Scholar
  20. 20.
    Van den Berg, J. J., Winterbourn, C. C., and Kuypers, F. A. (1993) J. Lipid Res., 34, 2005–2012.Google Scholar
  21. 21.
    Winterbourn, C. C., van den Berg, J. J., Roitman, E., and Kuypers, F. A. (1992) Arch. Biochem. Biophys., 296, 547–555.Google Scholar
  22. 22.
    Panasenko, O. M., Evgina, S. A., Driomina, E. S., Sharov, V. S., Sergienko, V. I., and Vladimirov, Yu. A. (1995) Free Rad. Biol. Med., 19, 133–140.Google Scholar
  23. 23.
    Panasenko, O. M., Evgina, S. A., Aidyraliev, R. K., Sergienko, V. I., and Vladimirov, Yu. A. (1994) Free Rad. Biol. Med., 16, 143–148.Google Scholar
  24. 24.
    Schiller, J., Arnhold, J., Zachaus, A., and Arnold, K. (1997) Z. Naturforsch., C-52, 694–701.Google Scholar
  25. 25.
    Bauerova, K., and Bezek, A. (1999) Gen. Physiol. Biophys., 18, Spec. No., 15–20.Google Scholar
  26. 26.
    Podrez, E. A., Abu-Soud, H. M., and Hazen, S. L. (2000) Free Rad. Biol. Med., 28, 1717–1725.Google Scholar
  27. 27.
    Carr, A. C., van den Berg, J. J., and Winterbourn, C. C. (1998) Biochim. Biophys. Acta, 1392, 254–264.Google Scholar
  28. 28.
    Arnhold, J., Panasenko, O. M., Schiller, J., Vladimirov, Yu. A., and Arnold, K. (1995) Chem. Phys. Lipids, 78, 55–64.Google Scholar
  29. 29.
    Jerlich, A., Pitt, A. R., Schaur, R. J., and Spickett, C. M. (2000) Free Rad. Biol. Med., 28, 673–682.Google Scholar
  30. 30.
    Iwase, H., Takahashi, K., Takatori, T., Shimizu, T., Aono, K., Yamada, Y., Iwadate, K., and Nagao, M. (1995) Biochem. Biophys. Res. Commun., 215, 945–951.Google Scholar
  31. 31.
    Carr, A. C., Winterbourn, C. C., Blunt, J. W., Phillips, A. J., and Abell, A. D. (1997) Lipids, 32, 363–367.Google Scholar
  32. 32.
    Carr, A. C., van den Berg, J. J., and Winterbourn, C. C. (1996) Arch. Biochem. Biophys., 332, 63–69.Google Scholar
  33. 33.
    Heinecke, J. W., Li, W., Mueller, D. M., Bohrer, A., and Turk, J. (1994) Biochemistry, 33, 10127–10136.Google Scholar
  34. 34.
    Stelmaszynska, T., Kukovetz, E., Egger, G., and Schaur, R. J. (1992) Int. J. Biochem., 24, 121–128.Google Scholar
  35. 35.
    Drobnies, A. E., Venczel, E. A., and Cornell, R. B. (1998) Biochim. Biophys. Acta, 1393, 90–98.Google Scholar
  36. 36.
    Carlin, G., and Djursaeter, R. (1988) Free Rad. Res. Commun., 4, 252–257.Google Scholar
  37. 37.
    Panasenko, O. M. (1997) Biofactors, 6, 181–190.Google Scholar
  38. 38.
    Schiller, J., Arnhold, J., Benard, S., Mueller, M., Reichl, S., and Arnold, K. (1999) Analyt. Biochem., 267, 46–56.Google Scholar
  39. 39.
    Benard, S., Arnhold, J., Lehnert, M., Arnhold, J., and Arnold, K. (1999) Chem. Phys. Lipids, 100, 115–125.Google Scholar
  40. 40.
    Ayorinde, F. O., Garvin, K., and Saeed, K. (2000) Rapid Commun. Mass. Spectrom., 14, 608–615.Google Scholar
  41. 41.
    Schiller, J., Arnhold, J., Glander, H.-J., and Arnold, K. (2000) Chem. Phys. Lipids, 106, 145–156.Google Scholar
  42. 42.
    Petcovic, M., Schiller, J., Mueller, M., Benard, S., Reichl, S., Arnold, K., and Arnhold, J. (2001) Analyt. Biochem., 289, 202–216.Google Scholar
  43. 43.
    Winterbourn, C. C., and Kettle, A. (2000) Free Rad. Biol. Med., 29, 403–409.Google Scholar
  44. 44.
    Schaur, J. R., Jerlich, A., and Stelmaszynska, T. (1998) Curr. Top. Biophys., 22 (Suppl. B), 176–185.Google Scholar
  45. 45.
    Folkes, L. K., Candeias, L. P., and Wardman, P. (1995) Arch. Biochem. Biophys., 323, 120–126.Google Scholar
  46. 46.
    Candeias, L. P., Stratford, M. R., and Wardman, P. (1994) Free. Rad. Res., 20, 241–249.Google Scholar
  47. 47.
    Panasenko, O. M., Arnhold, J., Vladimirov, Yu. A., Arnold, K., and Sergienko, V. I. (1997) Free Rad. Res., 27, 1–12.Google Scholar
  48. 48.
    Panasenko, O. M., Arnhold, J., Sergienko, V. I., Arnold, K., and Vladimirov, Yu. A. (1996) Biol. Membr. (Moscow), 13, 271–281.Google Scholar
  49. 49.
    Panasenko, O. M., Arnhold, J., Schiller, J., Arnold, K., and Sergienko, V. I. (1994) Biochim. Biophys. Acta, 1215, 259–266.Google Scholar
  50. 50.
    Panasenko, O. M., and Arnhold, J. (1996) Biol. Membr. (Moscow), 13, 89–99.Google Scholar
  51. 51.
    Chisolm, G. M., and Chai, Y. (2000) Free Rad. Biol. Med., 28, 1697–1707.Google Scholar
  52. 52.
    Kita, T., Kume, N., Yokode, M., Ishii, K., Arai, H., Horiuchi, H., Moriwaki, H., Minami, M., Kataoka, H., and Wakatsuki, Y. (2000) Ann. N. Y. Acad. Sci, 902, 95–100.Google Scholar
  53. 53.
    Okamoto, Y., Kawahara, Y., and Yokoyama, M. (1998) Kobe. J. Med. Sci., 44, 169–189.Google Scholar
  54. 54.
    Froese, D. E., McMaster, J., Man, R. Y., Choy, P. C., and Kroeger, E. A. (1999) Mol. Cell. Biochem., 197, 1–6.Google Scholar
  55. 55.
    Panasenko, O. M., Briviba, K., Klotz, L.-O., and Sies, H. (1997) Arch. Biochem. Biophys., 343, 254–259.Google Scholar
  56. 56.
    Hazell, L. J., and Stocker, R. (1993) Biochem. J., 290, 165–172.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • O. M. Panasenko
    • 1
    Email author
  • A. N. Osipov
    • 2
  • J. Schiller
    • 3
  • J. Arnhold
    • 3
  1. 1.Research Institute of Physico Chemical MedicineMoscowRussia
  2. 2.Russian State Medical UniversityMoscowRussia
  3. 3.Institute of Medical Physics and BiophysicsUniversity of Leipzig, Liebigstrasse 27LeipzigGermany

Personalised recommendations