Skip to main content
Log in

Plant 7SL RNA and tRNATyr genes with inserted antisense sequences are efficiently expressed in an in vitro transcription system from Nicotiana tabacum cells

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

RNA polymerase III-driven cassettes for the expression of antisense RNAs and ribozymes have recently attracted much attention because (1) pol III genes are transcribed abundantly in all kinds of tissues and (2) the transcripts are very stable by virtue of their small and compact size. We have designed two types of pol III-based expression vehicles. Antisense RNA sequences targeted against conserved structural elements or domains in the RNAs of potato spindle tuber viroid, hop latent viroid and potato virus S were either embedded in the anticodon region of a Nicotiana tRNATyr gene or near the 3′ end of an Arabidopsis 7SL RNA gene. Both classes of chimeric genes were transcribed in vitro in a homologous plant extract. Our studies clearly revealed that the modified tRNA and 7SL RNA genes, carrying insertions of up to 90 and 120 bp, respectively, were expressed efficiently in the tobacco nuclear extract, resulting in high levels of stable chimeric transcripts. 7SL RNA (also termed SRP RNA) represents the RNA component of the signal recognition particle. This is the first report of demonstrating the employment of 7SL RNA genes as potential cassettes for the expression of antisense RNA and ribozyme sequences and might be helpful in future experiments to control their localization in specific sub-cellular compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson, J., Trotta, C.R. and Li, H. 1998. tRNA splicing. J. Biol. Chem. 273: 12685–12688.

    Google Scholar 

  • Akama, K. and Kashihara, M. 1996. Plant nuclear tRNAMet genes are ubiquitously interrupted by introns. Plant Mol. Biol. 32: 427–434.

    Google Scholar 

  • Akama, K., Nass, A., Junker, V. and Beier, H. 1997. Characterization of nuclear tRNATyr introns: their evolution from red algae to higher plants. FEBS Lett. 417: 213–218.

    Google Scholar 

  • Akama, K., Junker, V., Yukawa, Y., Sugiura, M. and Beier, H. 2000. Splicing of Arabidopsis tRNAMet precursors in tobacco cell and wheat germ extracts. Plant Mol. Biol. 44: 155–165.

    Google Scholar 

  • Arnaud, P., Yukawa, Y., Lavie, L., Pelissier, T., Sugiura, M. and Deragon, J.-M. 2001. Analysis of the SINE S1 Pol III promoter from Brassica; impact of methylation and influence of external sequences. Plant J. 26: 295–305.

    Google Scholar 

  • Bertrand, E., Castanotto, D., Zhou, C., Carbonelle, C., Lee, N.S., Good, P., Chatterjee, S., Grange, T., Pictet, R., Kohn, D., Engelke, D. and Rossi, J.J. 1997. The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization. RNA 3: 75–88.

    Google Scholar 

  • Bourque, J.E. and Folk, W.R. 1992. Suppression of gene expression in plant cells utilizing antisense sequences transcribed by RNA polymerase III. Plant Mol. Biol. 19: 641–647.

    Google Scholar 

  • Bredow, S., Sürig, D., Müller, J., Kleinert, H. and Benecke, B.-J. 1990. Activating transcription factor (ATF) regulates human 7SL RNA transcription by RNA polymerase III in vivo and in vitro. Nucl. Acids Res. 18: 6779–6784.

    Google Scholar 

  • Ciliberto, G., Traboni, C. and Cortese, R. 1982. Relationship between the two components of the split promoter of eukaryotic tRNA genes. Proc. Natl. Acad. Sci. USA 79: 1921–1925.

    Google Scholar 

  • Cotten, M. and Birnstiel, M.L. 1989. Ribozyme mediated destruction of RNA in vivo. EMBO J. 8: 3861–3866.

    Google Scholar 

  • Emde, G., Frontzek, A. and Benecke, B.-J. 1997. Secondary structure of the nascent 7SL RNA mediates efficient transcription by RNA polymerase III. RNA 3: 538–549.

    Google Scholar 

  • Fan, H. and Sugiura, M. 1995. A plant basal in vitro system supporting accurate transcription of both RNA polymerase II-and III-dependent genes: supplement of green leaf component(s) drives accurate transcription of a light-responsive rbcS gene. EMBO J. 14: 1024–1031.

    Google Scholar 

  • Fan, H., Yakura, K., Miyanishi, M., Sugita, M. and Sugiura, M. 1995. In vitro transcription of plant RNA polymerase Idependent rRNA genes is species-specific. Plant J. 8: 295–298.

    Google Scholar 

  • Gabrielsen, O.S. and Sentenac, A. 1991. RNA polymerase III (C) and its transcription factors. Trends Biol. Sci. 16: 412–416.

    Google Scholar 

  • Geiduschek, E.P. and Tocchini-Valentini, G.P. 1988. Transcription by RNA polymerase III. Annu. Rev. Biochem. 57: 873–914.

    Google Scholar 

  • Haseloff, J. and Gerlach, W.L. 1988. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334: 585–591.

    Google Scholar 

  • He, X.-P., Bataillé, N. and Fried, H.M. 1994. Nuclear export of signal recognition particle RNA is a facilitated process that involves the Alu sequence domain. J. Cell Sci. 107: 903–912.

    Google Scholar 

  • Heard, D.J., Filipowicz, W., Marques, J.P., Palme, K. and Gualberto, J.M. 1995. An upstream U-snRNA gene-like promoter is required for transcription of the Arabidopsis thaliana 7SL RNA gene. Nucl. Acids Res. 23: 1970–1976.

    Google Scholar 

  • Heusch, M., Kraus, G., Johnson, P. and Wong-Staal, F. 1996. Intracellular immunization against SIVmac utilizing a hairpin ribozyme. Virology 216: 241–244.

    Google Scholar 

  • Hofstetter, H., Kressmann, A. and Birnstiel, M.L. 1981. A split promoter for a eucaryotic tRNA gene. Cell 24: 573–585.

    Google Scholar 

  • Kuwabara, T., Warashina, M., Koseki, S., Sano, M., Ohkawa, J., Nakayama, K. and Taira, K. 2001. Significant higher activity of a cytoplasmic hammerhead ribozyme than a corresponding nuclear counterpart: engineered tRNAs with an extended 3' end can be exported efficiently and specifically to the cytoplasm in mammalian cells. Nucl. Acids Res. 29: 2780–2788.

    Google Scholar 

  • Larsen, N. and Zwieb, C. 1990. SRP-RNA sequence alignment and secondary structure. Nucl. Acids Res. 19: 209–215.

    Google Scholar 

  • Loss, P., Schmitz, M., Steger, G. and Riesner, D. 1991. Formation of a thermodynamically metastable structure containing hairpin II is critical for infectivity of potato spindle tuber viroid RNA. EMBO J. 10: 719–727.

    Google Scholar 

  • Lück, R., Steger, G., Riesner, D. 1996. Thermodynamic prediction of conserved secondary structure: application to the RRE element of HIV, the tRNA-like element of CMV and the mRNA of prion protein. J. Mol. Biol. 258: 813–826.

    Google Scholar 

  • Marques, J.P., Gualberto, J.M. and Palme, K. 1993. Sequence of the Arabidopsis thaliana 7SL RNA gene. Nucl. Acids Res. 21: 3581.

    Google Scholar 

  • Medina, M.F. and Joshi, S. 1999a. RNA polymerase III-driven expression cassettes in human gene therapy. Curr. Opin. Mol. Ther. 1: 580–594.

    Google Scholar 

  • Medina, M.F. and Joshi, S. 1999b. Design, characterization and testing of tRNALys 3-based hammerhead ribozymes. Nucl. Acids Res. 27: 1698–1708.

    Google Scholar 

  • Müller, J. and Benecke, B.-J. 1999. Analysis of transcription factors binding to the human 7SL RNA gene promoter. Biochem. Cell Biol. 77: 431–438.

    Google Scholar 

  • Paule, M.R. and White, R.J. 2000. Transcription by RNA polymerases I and III. Nucl. Acids Res. 28: 1283–1298.

    Google Scholar 

  • Perriman, R., Bruening, G., Dennis, E.S. and Peacock, W.J. 1995. Effective ribozyme delivery in plant cells. Proc. Natl. Acad. Sci. USA 92: 6175–6179.

    Google Scholar 

  • Politz, J.C., Yarvoi, S., Kilroy, S.M., Gowda, K., Zwieb, C. and Pederson, T. 2000. Signal recognition particle components in the nucleolus. Proc. Natl. Acad. Sci. USA 97: 55–60.

    Google Scholar 

  • Riedel, L., Pütz, A., Hauser, M.-T., Luckinger, R., Wassenegger, M. and Sänger, H.L. 1995. Characterization of the signal recognition particle (SRP) RNA population of tomato (Lycopersicon esculentum). Plant Mol. Biol. 27: 669–680.

    Google Scholar 

  • Riedel, L., Volger, U., Luckinger, R., Pütz, A., Sänger, H.L. and Wassenegger, M. 1996. Molecular analysis of the gene family of the signal recognition particle (SRP) RNA of tomato. Plant Mol. Biol. 31: 113–125.

    Google Scholar 

  • Riesner, D. and Gross, H.J. 1985. Viroids. Annu. Rev. Biochem. 54: 531–564.

    Google Scholar 

  • Riesner, D., Henco, K., Rokohl, U., Klotz, G., Kleinschmidt, A.K., Domdey, H., Jank, P., Gross, H.J. and Sänger, H.L. 1979. Structure and structure formation of viroids. J. Mol. Biol. 133: 85–115.

    Google Scholar 

  • Stange, N. and Beier, H. 1986: A gene for the major cytoplasmic tRNATyr from Nicotiana rustica contains a 13 nucleotides long intron. Nucl. Acids Res. 21: 8691.

    Google Scholar 

  • Stange, N., Gross, H.J. and Beier, H. 1988. Wheat germ splicing endonuclease is highly specific for plant pre-tRNAs. EMBO J. 7: 3823–3828.

    Google Scholar 

  • Stange, N., Beier, D. and Beier, H. 1992. Intron excision from tRNA precursors by plant splicing endonuclease requires unique features of the mature tRNA domain. Eur. J. Biochem. 210: 193–203.

    Google Scholar 

  • Tabler, M. and Tsagris, M. 1991. Catalytic antisense RNAs produced by incorporating ribozyme cassettes into cDNA. Gene 108: 175–183.

    Google Scholar 

  • Thompson, J.D., Ayers, D.F., Malmstrom, T.A., McKenzie, T.L., Ganousis, L., Chowrira, B.M., Couture, L. and Stinchcomb, D.T. 1995. Improved accumulation and activity of ribozymes expressed from a tRNA-based RNA polymerase III promoter. Nucl. Acids Res. 23: 2259–2268.

    Google Scholar 

  • Turner, R. and Foster, G.D. 1997. Deletion analysis of a translational enhancer upstream from the coat protein open reading frame of potato virus S. Arch. Virol. 142: 167–175.

    Google Scholar 

  • van Tol, H., Stange, N., Gross, H.J. and Beier, H. 1987. A human and a plant intron-containing tRNATyr gene are both transcribed in a HeLa cell extract but spliced along different pathways. EMBO J. 6: 35–41.

    Google Scholar 

  • Walter, P. and Blobel, G. 1982. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299: 691–698.

    Google Scholar 

  • Willis, I.M. 1993. RNA polymerase III genes, factors and transcriptional specificity. Eur. J. Biochem. 212: 1–11.

    Google Scholar 

  • Yukawa, Y., Sugita, M. and Sugiura, M. 1997. Efficient in vitro transcription of plant nuclear tRNASer genes in a nuclear extract from tobacco cultured cells. Plant J. 12: 965–970.

    Google Scholar 

  • Yukawa, Y., Sugita, M., Choisne, N., Small, I. and Sugiura, M. 2000. The TATA motif, the CAA motif and the poly(T) transcription termination motif are all important for transcription re-initiation on plant tRNA genes. Plant J. 22: 439–447.

    Google Scholar 

  • Yukawa, Y., Fan, H., Akama, K., Beier, H., Gross, H.J. and Sugiura, M. 2001. A tobacco nuclear extract supporting transcription, processing, splicing and modification of plant intron-containing tRNA precursors. Plant J. 28: 583–594.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yukawa, Y., Matoušek, J., Grimm, M. et al. Plant 7SL RNA and tRNATyr genes with inserted antisense sequences are efficiently expressed in an in vitro transcription system from Nicotiana tabacum cells. Plant Mol Biol 50, 713–723 (2002). https://doi.org/10.1023/A:1019905730397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019905730397

Navigation