Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Potential Remobilization of Toxic Anions during Reduction of Arsenated and Chromated Schwertmannite by the Dissimilatory Fe(III)-Reducing Bacterium Acidiphilium cryptum JF-5

  • 69 Accesses

  • 16 Citations


Schwertmannite, an iron(III)-oxyhydroxysulfate formed in acidic mining-impacted stream or lake waters often contaminated with toxic elements like arsenate or chromate, is able to incorporate high amounts of these oxyanions. Detoxification of the water might be achieved if precipitated arsenated or chromated schwertmannite is fixed in the sediment. However, under reduced conditions, reductive dissolution of iron oxides mediated by the activity of Fe(III)-reducing bacteria might mobilize arsenate and chromate again. In this study, the reduction of synthesized arsenated or chromated schwertmannite by the acidophilic Fe(III)-reducer Acidiphilium cryptum JF-5, isolated from an acidic mining-impacted sediment, was investigated. In TSB medium at pH 2.7 with glucose as electron donor, A. cryptum JF-5 reduced about 10% of the total Fe(III) present in pure synthetic schwertmannite but only 5% of Fe(III) present in arsenated schwertmannite. In contrast to sulfate that was released during the reductive dissolution of pure schwertmannite, arsenate was not released during the reduction of arsenated schwertmannite probably due to the high surface complexation constant of arsenate and Fe(III). In medium containing chromated schwertmannite, no Fe(II) was formed, and no glucose was consumed indicating that chromate might have been toxic to cells of A. cryptum JF-5. Both As(V) or Cr(VI) could not be utilized as electron acceptor by A. cryptum JF-5. A comparison between autoclaved (121 °C for 20 min) and non-autoclaved schwertmannite samples demonstrated that nearly 100%of the bound sulfate was released during heating, and FTIR spectra indicated a transformation of schwertmannite to goethite. This structural change was not observed with autoclaved arsenated or chromated schwertmannite. These results suggest that the mobility of arsenate and chromate is not enhanced by the activity of acidophilic Fe(III)-reducing bacteria in mining-impacted sediments. In contrast, the presence of bound arsenate and chromate seemed to stabilize schwertmannite against reductive dissolution and its further transformation to goethite that is an ongoing process in those sediments.

This is a preview of subscription content, log in to check access.


  1. Ahmann, D., Krumholz, L., Hemond, H., Lovley, D. and Morel, F.: 1997, Environ. Sci. Technol. 31, 2923–2930.

  2. Barham, R. J.: 1997, J. Mater. Res. 12, 2751–2758.

  3. Biber, M. V., Santos Alfonso, M. and Stumm, W.: 1994, Geochim. Comochim. Acta 59, 1999–2010.

  4. Bigham, J. M., Schwertmann, U., Carlson, L. and Murad, E.: 1990, Geochim. Comochim. Acta 54, 2743–2758.

  5. Bigham, J. M., Carlson, L. and Murad, E.: 1994, Mineralogical Magazine 58, 641–648.

  6. Bigham, J. M., Schwertmann, U., Traina, S. J., Winland, R. L. and Wolf, M.: 1996, Geochim. Comochim. Acta 60, 2111–2121.

  7. Bridge, T. M. and Johnson, D. B.: 2000, Geomicrobiol. 17, 193–206.

  8. Carlson, L., Bigham, J. M., Schwertmann, U., Kyek, A. and Wagner, F.: 2001, Environ. Sci. Technol. (submitted).

  9. Cornell, R. M. and Schwertmann, U.: 1996, The Iron Oxides, VCH-Weinheim, 573 pp.

  10. Cummings, D. E., Caccavo, F., Fendorf Jr., S. and Rosenzweig, R. F.: 1999, Environ. Sci. Technol. 33, 723–729.

  11. Dzombak, D. A. and Morel, F. M. M.: 1990, Surface Complexation Modeling, Wiley, 393 pp.

  12. Fortin, D. and Beveridge, T. J.: 1996, FEMS Microb. Ecol. 21, 11–24.

  13. Johnson, D. B. and McGinness, S.: 1991, Appl. Environ. Microbiol. 57, 207–211.

  14. Küsel, K., Dorsch, T., Acker, G. and Stackebrandt, E.: 1999, Appl. Environ. Microbiol. 65, 3633–3640.

  15. Küsel, K. and Dorsch, T.: 2000, Microbiol. Ecol. 40, 238–249.

  16. Küsel, K., Roth, U., Dorsch, T. and Peiffer, S.: 2001, Environ. Exper. Botany 46, 213–223.

  17. Küsel, K. and Drake, H. L.: 1995, Appl. Environ. Microbiol. 61, 3667–3675.

  18. Lovley, D. R.: 1993, Ann. Rev. Microbiol. 47, 263–290.

  19. Lovley, D. R. and Philipps, E. J. P.: 1986, Appl. Environ. Microbiol. 52, 751–757.

  20. McLean, J. and Beveridge, T. J.: 2001, Appl. Environ. Microbiol. 67, 1076–1084.

  21. Munch, J. C. and Ottow, J. G. C.: 1980, Soil Sci. 129, 15–21.

  22. Nieboer, E. and Jusys, A. A.: 1988, in J. O. Nriagu and E. Nieboer (eds), Chromium in the Natural and Human Environments, John Wiley & Sons, New York, pp. 21–80.

  23. Peak, D., Ford, R. G. and Sparks, D. L.: 1999, J. Colloid and Interface 218, 289–299

  24. Peine, A., Tritschler, A., Küsel, K. and Peiffer, S.: 2000, Limnol. Oceanogr. 45, 1077–1087.

  25. Regenspurg, S. and Peiffer, S.: 2000, in Rammlmair et al. (eds), Applied Mineralogy in Research Economy, Technology, Ecology and Culture, Vol. 2, Balkema, pp. 649–652.

  26. Schwertmann, U., Cambier, P. and Murad, E.: 1985, Clays and Clay Minerals 33(5), 369–378.

  27. Schwertmann, U.: 1991, Plant and Soil 130, 1–25.

  28. Schwertmann, U., Bigham, J. and Murad, E.: 1995, Eur. J. Mineral. 7, 547–552.

  29. Snow, E. T.: 1991, Health Perspect. 92, 75.

  30. Tamura, H., Goto, K., Yotsuyanagi, T. and Nagama, M.: 1974, Talanta 21, 314–318.

  31. Urrutia, M. M., Roden, E. E., Fredrickson, J. F. and Zachara, J. M.: 1998, Geomicrobiol. 15, 269–291.

  32. Yu, J.-Y., Heo, B., Choi, I.-K., Cho, J.-P. and Chang, H.-W.: 1999, Geochim. Comochim. Acta 63, 3407–3416.

Download references

Author information

Correspondence to Kirsten Küsel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Regenspurg, S., Gößner, A., Peiffer, S. et al. Potential Remobilization of Toxic Anions during Reduction of Arsenated and Chromated Schwertmannite by the Dissimilatory Fe(III)-Reducing Bacterium Acidiphilium cryptum JF-5. Water, Air, & Soil Pollution: Focus 2, 57–67 (2002). https://doi.org/10.1023/A:1019903729223

Download citation

  • arsenate
  • chromate
  • effect of heat
  • microbial Fe(III) reduction
  • schwertmannite