Skip to main content
Log in

Boundary conditions during biaxial testing of planar connective tissues. Part 1: Dynamic Behavior

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Current mechanical testing methods used to determine the biaxial properties of planar connective tissues may lead to artifactual observations of material behavior. The method of sample gripping affects the constraint on the extracellular fibers at the bounds of the sample. This applied constraint not only affects how the load is transferred to the sample, but also how the load is transmitted throughout the rest of the material – thereby influencing the resulting mechanical behavior of the tissue. In this study, we compared the dynamic biaxial mechanical response of pericardial tissue samples under two different gripping methods: (i) the common method of suturing sample edges and (ii) a new biaxial clamping method. Tissue samples were repeatedly testing using both gripping methods under the same conditions. The tissue samples appeared to be stiffer and less extensible when mechanically tested with clamped sample edges, as opposed to when tested with sutured sample edges. Thus, the influence of the sample boundaries affected the response of the material – precisely the situation to be avoided for reliable material testing. This casts doubt on whether any in vitro mechanical testing method can used to determine the “real” properties of the tissue since the boundary conditions of the tissue in situ are presently unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. P. Beer and E. R. Johnston Jr., in “Mechanics of Materials” (McGraw Hill Ryerson Limited, Toronto, 1981) p. 79.

    Google Scholar 

  2. R. D. Cook and W. C. Young, in “Advanced Mechanics of Materials” (Macmillan Publishing Company, New York, 1985) p. 53.

    Google Scholar 

  3. Y. Lanir and Y. C. P. Fung, J. Biomech. 7 (1974) 171-182.

    Google Scholar 

  4. J. D. Humphrey, D. L. Vawter and R. P. Vito, ibid. 20 (1987) 59-65.

    Google Scholar 

  5. P. M. F. Nielson, P. J. Hunter and B. H. Smaill, J. Biomech. Eng. 113 (1991) 295-300.

    Google Scholar 

  6. N. Stubbs, J. Reinforced Plastics & Composites 3 (1984) 180-192.

    Google Scholar 

  7. J. M. Lee and S. E. Langdon, J. Biomech. 29 (1996) 829-832.

    Google Scholar 

  8. S. E. Langdon, R. Chernecky, C. A. Pereira, D. Abdulla and J. M. Lee, Biomaterials 20 (1999) 137-153.

    Google Scholar 

  9. A. H. Hoffman and P. Grigg, J. Biomech. 17 (1984) 795-800.

    Google Scholar 

  10. A. D. Mcculloch and J. H. Omens, J. Biomech. 24 (1991) 539-548.

    Google Scholar 

  11. A. E. Green and J. E. Adkins, in “Large Elastic Deformations” (Oxford University Press, Inc., New York, NY, 1960).

    Google Scholar 

  12. Y. C. P. Fung, in “Biomechanics: Mechanical Properties of Living Tissues” (Springer-Velag, Inc., New York, NY, 1981).

    Google Scholar 

  13. J. D. Humphrey, D. L. Vawter and R. P. Vito, J. Biomech. Eng. 109 (1987) 115-120.

    Google Scholar 

  14. J. D. Humphrey, R. K. Strumpf and F. C. P. Yin, Am. J. Physiol. 259 (1990) H101-H108.

    Google Scholar 

  15. J. D. Humphrey, R. K. Strumpf and F. C. P. Yin, J. Biomech. Eng. 112 (1990) 333-339.

    Google Scholar 

  16. L. E. Malvern, in “Introduction to the Mechanics of a Continuous Medium” (Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1969).

    Google Scholar 

  17. S. D. Waldman and J. M. Lee, Accepted by the J. Biomech. Eng. (2000).

  18. F. H. Silver, Y. P. Kato, M. Ohno and A. J. Wasserman, J. Long-Term Effects Med. Implants 2 (1992) 165-198.

    Google Scholar 

  19. E. MÖnch and D. Galster, British Journal of Applied Physics 14 (1963) 810-812.

    Google Scholar 

  20. C. W. Bert, B. L. Mayberry and J. D. Ray, ASTM STP 460 (1969) 362-380.

    Google Scholar 

  21. R. Kreißig and J. Schindler, Acta Mech. 65 (1986) 169-179.

    Google Scholar 

  22. Z. Fawaz and K. W. Neale, Trans. CSME 19 (1995) 25-35.

    Google Scholar 

  23. D. E. Birk, M. V. Nurminskaya and E. I. Zycband, Develop. Dynamics 202 (1995) 229-243.

    Google Scholar 

  24. D. E. Birk, E. I. Zycband, S. Woodruff, D. A. Winkelmann and R. L. Trelstad, ibid. 208 (1997) 291-298.

    Google Scholar 

  25. T. Ishihara, V. J. Ferrans, M. Jones, S. W. Boyce, O. Kawanami and W. C. Roberts, Am. J. Cardiol. 46 (1980) 744-753.

    Google Scholar 

  26. T. Ishihara, V. J. Ferrans, M. Jones, S. W. Boyce and W. C. Roberts, J. Thoracic and Cardiovascular Surg. 81 (1981) 747-757.

    Google Scholar 

  27. A. W. Wiegner, O. H. L. Bing and T. K. Borg and J. B. Caulfield, Circulation Res. 49 (1981) 807-814.

    Google Scholar 

  28. W. A. Naimark, J. M. Lee, H. Limeback and D. T. Cheung, Am. J. Physiol. 263 (1992) H1095-H1106.

    Google Scholar 

  29. J. Wallraff, Herzbeutels. Klin. Wochenschr. 16 (1937) 1665-1669.

    Google Scholar 

  30. A. M. Cribb and J. E. Scott, J. Anat. 187 (1995) 423-428.

    Google Scholar 

  31. J. M. Lee and D. R. Boughner, Circulation Res. 49 (1981) 533-544.

    Google Scholar 

  32. J. M. Lee and D. R. Boughner, ibid. 57 (1985) 475-481.

    Google Scholar 

  33. M. C. Lee, M. M. Lewinter, G. Freeman, R. Shabetai and Y. C. P. Fung, Am. J. Physiol. 249 (1985) H222-H230.

    Google Scholar 

  34. M. C. Lee, Y. C. P. Fung, R. Shabetai and M. M. Lewinter, ibid. 253 (1987) H75-H82.

    Google Scholar 

  35. P. H. Chew, F. C. P. Yin and S. L. Zeger, J. Mol. Cell. Cardiol. 18 (1986) 567-578.

    Google Scholar 

  36. J. M. Lee, S. A. Haberer and D. R. Boughner, J. Biomed. Mater. Res. 23 (1989) 457-475.

    Google Scholar 

  37. H. S. Choi and R. P. Vito, J. Biomech. Eng. 112 (1990) 153-159.

    Google Scholar 

  38. M. S. Sacks, C. J. Chuong and R. More, ASAIO J. 40 (1994) M632-M637.

    Google Scholar 

  39. P. Zioupos, J. C. Barbenel and J. Fisher, Med. Biol. Eng. Comput. 30 (1992) 76-82.

    Google Scholar 

  40. F. C. P. Yin, R. K. Strumpf, P. H. Chew and S. L. Zeger, J. Biomech. 20 (1987) 577-589.

    Google Scholar 

  41. S. D. Waldman, M. S. Sacks and J. M. Lee, Submitted to the J. Mater. Sci. (2001).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldman, S.D., Michael Lee, J. Boundary conditions during biaxial testing of planar connective tissues. Part 1: Dynamic Behavior. Journal of Materials Science: Materials in Medicine 13, 933–938 (2002). https://doi.org/10.1023/A:1019896210320

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019896210320

Keywords

Navigation