Skip to main content
Log in

On the Critical Point of Tungsten

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Experimental results of exploding tungsten wire experiments with heating rates of 1010 to 1011 K⋅s−1 are interpreted using a one-dimensional hydrodynamic model. The vaporization dynamics under these conditions are discussed. It is shown that for the wires used the superheating of the liquid phase is small and vaporization starts close to the binodal line of the phase diagram. Due to inertia, a volume vaporization takes place in a thin surface layer, while in the bulk of the column formed by the exploding wire a pressure of the order of 10 kbar is maintained. Sufficiently uniform density and temperature distributions are formed in the liquid core surrounded by the two-phase layer. This behavior of vaporizing wires was used to obtain the thermal expansion coefficient of liquid tungsten along with its critical point parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Hess, Phys. Chem. Liq. 30:251 (1995).

    Google Scholar 

  2. M. M. Martynyuk and A. D. Karimkhodzhaev, Russ. J. Phys. Chem. 48:722 (1974).

    Google Scholar 

  3. U. Seydel, W. Fucke, and H. Wadle, Die Bestimmung thermophysikalischer Daten flüssiger hochschmelzender Metalle mit schnellen Pulsaufheizexperimenten (Verlag Dr. Peter Mannhold, Düsseldorf, 1980).

    Google Scholar 

  4. K. Boboridis, G. Pottlacher, and H. Jäger, Int. J. Thermophys. 20:1289 (1999).

    Google Scholar 

  5. V. Lebedev and A. I. Savvatimski, Usp. Fiz. Nauk 144:215 (1984).

    Google Scholar 

  6. R. S. Hixson and M. A. Winkler, Int. J. Thermophys. 11:709 (1990).

    Google Scholar 

  7. E. Kaschnitz, G. Pottlacher, and L. Windholz, High Press. Research 4:558 (1990).

    Google Scholar 

  8. A. Kloss, T. Motzke, R. Grossjohann, and H. Hess, Phys. Rev. E 54:5851 (1996).

    Google Scholar 

  9. A. Kloss, A. D. Rakhel, and H. Hess, Int. J. Thermophys. 19:983 (1998).

    Google Scholar 

  10. V. S. Vorob'ev and A. D. Rakhel, Teplofiz. Vys. Temp. 28:18 (1990).

    Google Scholar 

  11. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. A. Prokopov, Numerical Solution of Many-Dimensional Gas Dynamic Tasks (Nauka, Moscow, 1976).

    Google Scholar 

  12. A. A. Samarski and Yu. P. Popov, Difference Methods for Solution of Gas Dynamic Tasks (Nauka, Moscow, 1980).

    Google Scholar 

  13. D. A. Young, Lawrence Livermore Laboratory Report No. UCRL-52352 (1977).

  14. A. A. Likalter, Usp. Fiz. Nauk. 170(3):831 (2000).

    Google Scholar 

  15. R. Landauer, J. Appl. Phys. 23:779 (1952).

    Google Scholar 

  16. D. R. Lide and H. P. R. Frederikse, eds, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Ann Arbor, London, Tokyo, 1993- 1994).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1992).

    Google Scholar 

  18. L. V. Altshuler, A. A. Bakanova, A. V. Bushman, I. P. Dudalapov, and V. N. Zubarev, Zh. Exsp. Teor. Fiz. 73:1866 (1977).

    Google Scholar 

  19. S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, J. B. Greenly, Y. S. Dimant, and D. A. Hammer, Phys. Rev. Lett. 83:4313 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakhel, A.D., Kloss, A. & Hess, H. On the Critical Point of Tungsten. International Journal of Thermophysics 23, 1369–1380 (2002). https://doi.org/10.1023/A:1019873110953

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019873110953

Navigation