Skip to main content
Log in

How to Steer a Quantum System over a Schrödinger Bridge

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A new approach to the steering problem for the Schrödinger equation relying on stochastic mechanics and on the theory of Schrödinger bridges is presented. Given the initial and final states ψ 0 and ψ 1, respectively, the desired quantum evolution is constructed with the aid of a reference quantum evolution. The Nelson process corresponding to the latter evolution is used as reference process in a Schrödinger bridge problem with marginal probability densities |ψ 0|2 and |ψ 1|2. This approach is illustrated by working out a simple Gaussian example.

PACS: 03.65.-w

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Oskin, F. T. Chong, and I. L. Chuang, Computer 79-87 (2002).

  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, UK, 2000).

    Google Scholar 

  3. M. Reck and A. Zeilinger, Phys. Rev. Lett. 73, 58 (1994).

    Google Scholar 

  4. D. Tannor, R. Kosloff, and A. Bartana, Faraday Discuss. 113, 365 (1999).

    Google Scholar 

  5. V. Ramakrishna, R. Ober, X. Sun, O. Steuernagel, J. Botina, and H. Rabitz, Phys. Rev. A 61, 032106 (1999).

    Google Scholar 

  6. V. Ramakrishna, K. L. Flores, H. Rabitz, and R. J. Ober, Phys. Rev. A 62, 053409 (2001).

    Google Scholar 

  7. V. Ramakrishna, R. J. Ober, K. L. Flores, and H. Rabitz, Phys. Rev. A (in press), arXiv quant-ph/0012019.

  8. A. Greentree, S. Schirmer, and A. Solomon, arXiv, quant-ph 0103118.

  9. R. Sang et al., Phys. Rev. A, 63 023408 (2001).

    Google Scholar 

  10. X. Zuo, K. Pahlke, and W. Mathis, arXiv quant-ph/0201011.

  11. N. Bogulibov, J. Timonen, and M. Zvonarev, arXiv quant-ph/0201335

  12. A. Pierce, M. Dahleh, and H. Rabitz, Phys. Rev. A 37, 4950-4964 (1988).

    Google Scholar 

  13. P. Gross, V. Ramakrishna, E. Vilallonga, H. Rabitz, M. Littman, S. Lyon, and M. Shayegan, Phys. Rev. B, 49 11100-11110 (1994).

    Google Scholar 

  14. M. Dahleh, A. Pierce, H. Rabitz, and V. Ramakrishna, Proc. IEEE 84, 6-15 (1996).

    Google Scholar 

  15. N. Cufaro Petroni, S. De Martino, S. De Siena, and F. Illuminati, J. Phys. A 32, 7489-7508 (1999).

    Google Scholar 

  16. L. Viola, E. Knill and S. Lloyd, Phys. Rev. Lett. 82, 2417-2421 (1999).

    Google Scholar 

  17. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).

    Google Scholar 

  18. N. Khaneja, R. Brockett, and S. J. Glaser, Phys. Rev. A 63, 32308 (2001).

    Google Scholar 

  19. D. D'Alessandro and M. Dahleh, IEEE Trans. Aut. Contr. 46, 866-876 (2001).

    Google Scholar 

  20. S. G. Schirmer and J. V. Leahy, Phys. Rev. A 63, 025403 (2001).

    Google Scholar 

  21. S. G. Schirmer, M. D. Girardeau, and J. V. Leahy, Phys. Rev. A 61, 012101 (2000).

    Google Scholar 

  22. E. Nelson, Dynamical Theories of Brownian Motion (Princeton University Press, Princeton, 1967).

    Google Scholar 

  23. E. Schrödinger, Sitzungsber. Preuss. Akad.Wissen. Berlin, Phys.Math. Klasse 144-153 (1931).

  24. A. Beghi, A. Ferrante, and M. Pavon, Proc. MTNS 2000, CD-ROM, paper nr. 268, M. Fliess and A. El Jai eds.

  25. R. Feynman, Rev. Mod. Phys. 20, 367 (1948).

    Google Scholar 

  26. R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  27. D. Bohm, Phys. Rev. 85, 166 (1952).

    Google Scholar 

  28. D. Bohm and J. P. Vigier, Phys. Rev. 96, 208 (1954).

    Google Scholar 

  29. D. Bohm and B. J. Hiley, Phys. Rep. 172, 93-122 (1989).

    Google Scholar 

  30. I. Fenyes, Z. Physik, 132, 81 (1952).

    Google Scholar 

  31. E. Nelson, Phys. Rev. 150, 1079 (1966).

    Google Scholar 

  32. F. Guerra, Phys. Rep. 77, 263 (1981).

    Google Scholar 

  33. K. Yasue, J. Funct. Anal. 41, 327-340 (1981).

    Google Scholar 

  34. F. Guerra and L. Morato, Phys. Rev. D 27, 1774 (1983).

    Google Scholar 

  35. E. Carlen, Comm. Math. Phys. 94, 293 (1984).

    Google Scholar 

  36. E. Nelson. Quantum Fluctuations (Princeton University Press, Princeton, 1985).

    Google Scholar 

  37. Ph. Blanchard, Ph. Combe, and W. Zheng, Math. and Physical Aspects of Stochastic Mechanics, Lect. Notes in Physics, vol. 281 (Springer Verlag, NewYork, 1987).

    Google Scholar 

  38. E. Nelson, in Ècole d'Ète de Probabilite`s de Saint-Flour XV-XVII, P. L. Hennequin, ed. Lecture Notes in Mathematics, Vol. 1362, pp. 428-450 (Springer Verlag, NewYork, 1988).

    Google Scholar 

  39. J. C. Zambrini, Phys. Rev. A 33, 1532 (1986).

    Google Scholar 

  40. M. Nagasawa, Prob. Th. Rel. Fields 82, 109-136 (1989).

    Google Scholar 

  41. B. C. Levy and A. J. Krener, J. Math. Phys. 34, 1846 (1993).

    Google Scholar 

  42. B. C. Levy and A. J. Krener, J. Math. Phys. 37, 769 (1996).

    Google Scholar 

  43. M. Pavon, J. Math. Phys. 36, 6774 (1995).

    Google Scholar 

  44. M. Pavon, Phys. Lett. A 209, 143-149 (1995).

    Google Scholar 

  45. F. Guerra, The Foundation of Quantum Mechanics (Kluwer, Amsterdam, 1995).

    Google Scholar 

  46. M. Pavon, J. Math. Phys. 40, 5565-5577 (1999).

    Google Scholar 

  47. H. H. Rosenbrock, IEEE Trans. Aut. Contr. 54, 73-77 (2000).

    Google Scholar 

  48. E. Schrödinger, Sitzungsber. Preuss. Akad. Berlin, Wissen. Phys. Math. Klasse 143, 296 (1930).

    Google Scholar 

  49. S. Adler, D. Brody, T. Brun, and L. Hughston, ''Martingale models for quantum state reduction,'' arXiv quant-ph/0107153, July 2001.

  50. R. Carmona, Taniguchi Symp. PMMP Katata 55-81 (1985).

  51. H. Föllmer, in Stochastic Processes-Mathematics and Physics, Lecture Notes in Mathematics, Vol. 1158, pp. 119-129 (Springer Verlag, NewYork, 1986).

    Google Scholar 

  52. A. Wakolbinger, in Proc. of the 4th Latin American Congress in Probability and Mathematical Statistics E. Cabaña et al., eds. Mexico City, 1990, Contribuciones en probabilidad y estadistica matematica 3, pp. 61-79 (1992).

  53. E. Schrödinger, Ann. Inst. H. Poincarè 2, 269 (1932).

    Google Scholar 

  54. H. Föllmer, in: Ècole d'Ètè de Probabilitès de Saint-Flour XV-XVII, P. L. Hennequin, ed. Lecture Notes in Mathematics, Vol. 1362, 102-203. (Springer Verlag, NewYork, 1988).

    Google Scholar 

  55. R. Fortet, J. Math. Pure Appl. IX, 83-105 (1940).

    Google Scholar 

  56. A. Beurling, Ann. Math. 72, 189-200 (1960).

    Google Scholar 

  57. B. Jamison, Z. Wahrscheinlichkeitstheorie verw. Gebiete 30, 65-86 (1974).

    Google Scholar 

  58. S. Bernstein, Verh. Int. Math. Kongress, Zürich, I, 288-309 (1932). 59. A. Kolmogorov, Math. Ann. 113, 766-772 (1936).

    Google Scholar 

  59. I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus (Springer Verlag, NewYork, 1988).

    Google Scholar 

  60. M. Pavon, in Systems and Networks: Mathematical Theory and Applications, Vol. II, U. Helmke, R. Mennichen, and J. Saurer, eds., Mathematical Research, Vol. 79, Akademie Verlag, Berlin, 409-412 (1994).

    Google Scholar 

  61. E. Madelung, Zeitschrift f. Phys. 40, 322 (1926).

    Google Scholar 

  62. A. M. Perelomov, Sov. Phys. Usp. 20, 703-720 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beghi, A., Ferrante, A. & Pavon, M. How to Steer a Quantum System over a Schrödinger Bridge. Quantum Information Processing 1, 183–206 (2002). https://doi.org/10.1023/A:1019873024970

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019873024970

Navigation