Skip to main content
Log in

Nonlinear Commutation Relations: Representations by Point-Supported Operators

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We present a class of non-Lie commutation relations admitting representations by point-supported operators (i.e., by operators whose integral kernels are generalized point-supported functions). For such relations we construct all operator-irreducible representations (up to equivalence). Each representation is realized by point-supported operators in the Hilbert space of antiholomorphic functions. We show that the reproducing kernels of these spaces can be represented via hypergeometric series and the theta function, as well as via their modifications. We construct coherent states that intertwine abstract representations with irreducible representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. C. Biedenharn, “The quantum group SU q(2) and a q-analogue of the boson operators,” J. Phys. A, 22 (1989), L873–L878.

    Google Scholar 

  2. V. G. Drinfeld, “Quantum groups,” in: Proc. of Intern. Congress of Math. (Berkeley), Amer. Math. Soc., Providence, 1987, pp. 789–820.

    Google Scholar 

  3. L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtadzhyan, “Quantization of Lie groups and Lie algebras,” Algebra i Analiz [St. Petersburg Math. J.], 1 (1989), 178–206.

    Google Scholar 

  4. I. M. Gelfand and D. B. Fairlie, “The algebra of Weyl symmetrized polynomials and its quantum extension,” Comm. Math. Phys., 136 (1991), 487–499.

    Google Scholar 

  5. M. Jimbo, “A q-difference analog of Ug and the Yang-Baxter equation,” Lett. Math. Phys., 10 (1985), 63–69.

    Google Scholar 

  6. P. P. Kulish and N. Yu. Reshetikhin, “1),” Lett. Math. Phys., 18 (1989), no. 2, 143–149.

    Google Scholar 

  7. E. K. Sklyanin, “On some algebraic structures related to the Yang-Baxter equation,” Funktsional. Anal. i Prilozhen. [Functional Anal. Appl.], 16 (1982), no. 4, 34–48.

    Google Scholar 

  8. Ya. I. Granovskii, I. M. Lutzenko, and A. S. Zhedanov, “Mutual integrability, quadratic algebras, and dynamical symmetry,” Ann. Phys., 217 (1992), 1–20.

    Google Scholar 

  9. Ya. I. Granovckii, A. S. Zhedanov, and I. M. Lutzenko, “Quadratic algebra as a “hidden” symmetry of the Hartmann potential,” J. Phys. A, 24 (1991), 3887–3894.

    Google Scholar 

  10. V. P. Maslov, “Use of the method of ordered operators for obtaining exact solutions,” Teoret. Mat. Fiz. [Theoret. and Math. Phys.], 33 (1977), no. 2, 185–209.

    Google Scholar 

  11. M. V. Karasev and V. P. Maslov, Nonlinear Poisson Brackets. Geometry and Quantization [in Russian], Nauka, Moscow, 1991.

    Google Scholar 

  12. J. A. de Azcarraga and D. Ellinas, “Complex analytic realizations for quantum algebras,” J. Math. Phys., 35 (1994), no. 3, 1322–1333.

    Google Scholar 

  13. D. Bonatsos and C. Daskaloyannis, “General deformation schemes and N = 2 supersymmetric quantum mechanics,” Phys. Lett. B, 307 (1993), 100–105.

    Google Scholar 

  14. M. Chaichian, D. Ellinas, and P. Kulish, “Quantum algebra as the dynamical symmetry of the deformed Jaynes-Cummings model,” Phys. Rev. Lett., 65 (1990), no. 8, 980–983.

    Google Scholar 

  15. S. Daskaloyannis, “Generalized deformed oscillator and nonlinear algebras,” J. Phys. A, 24 (1991), L789–L794.

    Google Scholar 

  16. C. Delbecq and C. Quesne, “Representation theory and q-boson realizations of Witten's su(2) and su(1, 1) deformations,” Phys. Lett. B, 300 (1993), 227–233.

    Google Scholar 

  17. C. Delbecq and C. Quesne, “Nonlinear deformations of su(2) and su(1, 1) generalizing Witten's algebra,” J. Phys. A, 26 (1993), L127–L134.

    Google Scholar 

  18. R. W. Gray and C. A. Nelson, “A completeness relation for the q-analogue coherent states by q-integration,” J. Phys. A, 23 (1990), L945–L950.

    Google Scholar 

  19. A. Jannussis, “New deformed Heisenberg oscillator,” J. Phys. A, 26 (1993), L233–L237.

    Google Scholar 

  20. J. Katriel and C. Quesne, “Recursively minimal-deformed oscillators,” J. Math. Phys., 37 (1996), no. 4, 1650–1661.

    Google Scholar 

  21. V. Maximov and A. Odzijewicz, “The q-deformation of quantum mechanics of one degree of freedom,” J. Math. Phys., 36 (1995), no. 4, 1681–1690.

    Google Scholar 

  22. S. Meljanac, M. Milekovic, and S. Pallua, “Unified view of deformed single-mode oscillator algebras,” Phys. Lett. B, 328 (1994), 55–59.

    Google Scholar 

  23. K. Odaka, T. Kishi, and S. Kamefuchi, “On quantization of simple harmonic oscillators,” J. Phys. A: Math. Geom., 24 (1991), L591–L596.

    Google Scholar 

  24. C. Quesne, “Coherent states, K-matrix theory, and q-boson realizations of the quantum algebra suq(2),” Phys. Lett. A, 153 (1991), 303–307.

    Google Scholar 

  25. M. Roček, “Representation theory of the nonlinear su(2) algebra,” Phys. Lett. B, 255 (1991), no. 4, 554–557.

    Google Scholar 

  26. E. Witten, “Gauge theories, vertex models, and quantum groups,” Nuclear Phys. B, 30 (1990), 285–346.

    Google Scholar 

  27. V. A. Fock, “Verallgemeinerung und Lösung der Diracschen statistischen Gleichung,” Z. Phys., 49 (1928), 339–357.

    Google Scholar 

  28. V. A. Fock, “Konfigurationsraum und zweite Quantelung,” Z. Phys., 75 (1932), 622–647.

    Google Scholar 

  29. P. A. M. Dirac, “Quantum electrodynamics,” Comm. Dublin Inst. Adv. Stud. Ser. A, 1 (1943), 1–36.

    Google Scholar 

  30. J. M. Cook, “The mathematics of second quantization,” Trans. Amer. Math. Soc., 74 (1953), 222–245.

    Google Scholar 

  31. E. Onofri, “A note on coherent state representation of Lie group,” J. Math. Phys., 16 (1975), 1087–1089.

    Google Scholar 

  32. A. M. Perelomov, “Coherent states for arbitrary Lie groups,” Comm. Math. Phys., 26 (1972), no. 3, 222–236.

    Google Scholar 

  33. A. M. Perelomov, Generalized Coherent States and Their Applications, Springer-Verlag, Berlin-New York, 1986.

    Google Scholar 

  34. M. Arik and D. Coon, “Hilbert spaces of analytic functions and generalized coherent states,” J. Math. Phys., 17 (1976), 524–527.

    Google Scholar 

  35. P. P. Kulish, “Contraction of quantum algebras and q-oscillators,” Teoret. Mat. Fiz. [Theoret. and Math. Phys.], 86 (1991), no. 1, 157–160.

    Google Scholar 

  36. A. F. Macfarlane, “On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q,” J. Phys. A, 22 (1989), 4581–4588.

    Google Scholar 

  37. F. A. Berezin, “Covariant and contravariant symbols of operators,” Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], 36 (1972), no. 5, 1134–1167.

    Google Scholar 

  38. F. A. Berezin, “Quantization,” Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], 38 (1974), 1116–1175.

    Google Scholar 

  39. F. A. Berezin, “Quantization in complex symmetric spaces,” Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], 39 (1975), 363–402.

    Google Scholar 

  40. F. A. Berezin, “General concept of quantization,” Comm. Math. Phys., 40 (1975), 153–174.

    Google Scholar 

  41. J. R. Klauder, “Continuous representation theory,” J. Math. Phys., 4 (1963), 1055–1073.

    Google Scholar 

  42. M. V. Karasev and E. M. Novikova, “Non-Lie permutation relations, coherent states, and quantum embedding,” in: Coherent Transform, Quantization, and Poisson Geometry (M. V. Karasev, editor), Publ. Amer. Math. Soc., Providence, R.I., 1998, pp. 1–202.

    Google Scholar 

  43. M. V. Karasev and E. M. Novikova, “Coherent transforms and irreducible representations corresponding to complex structures on a cylinder and on a torus,” Mat. Zametki [Math. Notes], 70 (2001), no. 6, 854–874.

    Google Scholar 

  44. H. Bateman and A. Erdélyi, Higher Transcendental Functions, vol. I, McGraw-Hill, New York-Toronto-London, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karasev, M.V., Novikova, E.M. Nonlinear Commutation Relations: Representations by Point-Supported Operators. Mathematical Notes 72, 48–65 (2002). https://doi.org/10.1023/A:1019865004455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019865004455

Navigation