Advertisement

Biochemical Genetics

, Volume 40, Issue 7–8, pp 263–272 | Cite as

Cloning, Mapping, and Characterization of the Human Rab3C Gene

  • Haipeng Cheng
  • Yushu Ma
  • Xiaohua Ni
  • Min Jiang
  • Yao Luo
  • Kang Ying
  • Yi Xie
  • Yumin Mao
Article

Abstract

Rab proteins are small molecular weight GTPases that control vesicular traffic in eukaryotic cells. A subset of Rab proteins, the Rab3 proteins are thought to play an important role in regulated exocytosis of vesicles. During the large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a cDNA clone encoding a novel Rab protein, which showed 99% identity with previously isolated bovine Rab3C at the amino acid level. It contained four conserved motifs characteristic of the Rab3 family. RT-PCR analysis indicated that human Rab3C was expressed in the human brain, placenta, and lung. By mapping, we localized the Rab3C gene to human chromosome 5q13. The Rab3C gene consisted of 6 exons spanning more than 310 kb of human genomic DNA. Rab3A, Rab3B, and Rab3D have been mapped to three different chromosomes, suggesting that they are not transcripts of the same gene.

Rab3C vesicular trafficking mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Baldini, G., Hohl, T., Lin, H. Y., and Lodish, H. F. (1992). Cloning of a rab3 isotype predominantly expressed in adipocytes. Proc. Natl. Acad. Sci. USA 89:5049–5052.PubMedGoogle Scholar
  2. Darchen, F., Zahraoui, A., Hammel, F., Monteils, M. P., Tavitian, A., and Scherman, D. (1990). Association of the GTP-binding protein Rab3A with bovine adrenal chromaffin granules. Proc. Natl. Acad., Sci. USA 87:5692–5696.Google Scholar
  3. Desjardins, M., Huber, L. A., Parton, R. G., and Griffith, G. (1994). Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J. Cell Biol. 124:677–688.PubMedGoogle Scholar
  4. Fischer von Mollard, G., Mignery, G. A., Baumert, M., Perin, M. S., Hanson, T. J., Burger, P. M., Jahn, R., and Sudhof, T. C. (1990). Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc. Natl. Acid. Sci. USA 87:1988–1992.Google Scholar
  5. Fischer von Mollard, G., Stahl, B., Khokhlatchev, A., Sudhof, T. C., and Jahn, R. (1994). Rab3C is a synaptic vesicle protein that dissociates from synaptic vesicles after stimulation of exocytosis. J. Biol. Chem. 269:10971–10974.PubMedGoogle Scholar
  6. Geppert, M., Bolshakov, V. Y., Slegelbaum, S. A., Takel, K., Camilli, P. D., Hammer, R. E., and Sudhof, T. C. (1994). The role of Rab3A in neurotransmitter release. Nature 369:493–497.PubMedGoogle Scholar
  7. Geppert, M., Goda, Y., Stevens, C. F., and Sudhof, T. C. (1997). The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387:810–814.PubMedGoogle Scholar
  8. Hall, A., and Zerial, M. (1995). General introduction. In Zerial, M., and Huber, L. A. (eds.), Guidebook to the Small GTPases, Oxford University Press, New York, pp. 3–11.Google Scholar
  9. Jena, B. P., Gumlowski, F. D., Konieczko, E. M., Fischer von Mollard, G., Jahn, J., and Jamieson, J. D. (1994). Redistribution of a rab3-like GTP-binding protein from secretory granules to the Golgi complex in pancreatic acinar cells during regulated exocytosis. J. Cell Biol. 124:43–53.PubMedGoogle Scholar
  10. Johannes, L., Lledo, P., Roa, M., Vincent, J., Henry, J., and Darchen, F. (1994). The GTPase rab3A negatively controls calcium-dependent exocytosis in neuroendocrine cells. EMBO J. 13:2029–2037.PubMedGoogle Scholar
  11. Lledo, P., Johannes, L., Vernier, P., Zorec, R., Darchen, F., Vincent, J. D., Henry, J. P., and Mason, W. T. (1994). Rab3 proteins: Key players in the control of exocytosis. Trends Neurosci. 17:426–432.PubMedGoogle Scholar
  12. Lledo, P., Vernier, P., Vincent, J. D., Mason, W. T., and Zorec, R. (1993). Inhibition of rab3B expression attenuates calcium-dependent exocytosis in rat anterior pituitary cells. Nature 364:540–544.PubMedGoogle Scholar
  13. Macara, I. G. (1994). Role of Rab3A GTPase in regulated seretion from neuroendocrine cells. TEM 5:267–271.Google Scholar
  14. Matsui, Y., Kikuchi, A., Kodo, J., Hishida, T., Teranishi, Y., and Takai, Y. (1988). Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weights of 25,000 from bovine brain. J. Biol. Chem. 263:11071–11074.PubMedGoogle Scholar
  15. Mizoguchi, A., Kim, S., Ueda, T., Kikuchi, A., Yorifuji, H., Hirokawa, N., and Takai, Y. (1990). Localization and subcellular distribution of smg p25A, a ras p21-like GTP-binding protein, in rat brain. J. Biol. Chem. 265:11872–11879.PubMedGoogle Scholar
  16. Oberhauser, A. F., Monck, J. R., Balch, W. E., and Fernandez, J. M. (1992). Exocytic fusion is activated by Rab3A peptides. Nature 360:270–273.PubMedGoogle Scholar
  17. Ohnishi, H., Samuelson, L. C., Yule, D. I., Ernst, S., and Williams, J. A. (1997). Overexpression of Rab3D enhances regulated amylase secretion from pancreatic acini of transgenic mice. J. Clin. Invest. 100:3044–3052.PubMedGoogle Scholar
  18. Rabinowitz, S., Horstmann, H., Gordon, S., and Griffith, G. (1992). Immunocytochemical characterization of the endocytic and phagolysosomal compartments in peritoneal macrophages. J. Cell Biol. 116:95–112.PubMedGoogle Scholar
  19. Raffaniello, R. D., Lin, J., Schwimmer, R., and Ojakian, G. K. (1999). Expression and localization of Rab3D in rat parotid gland. Biochim. Biophys. Acta 1450:352–363.PubMedGoogle Scholar
  20. Sudhof, T. C. (1995). The synaptic vesicle cycle: A cascade of protein-protein interactions. Nature 375:645–653.CrossRefPubMedGoogle Scholar
  21. Weber, E., Berta, G., Tousson, A., John, P. S., Green, M.W., Gopalokrishnan, U., Jilling, T., Sorscher, E. J., Elton, T. S., and Abrahamson, D. R. (1994). Expression and polarized targeting of a rab3 isoform in epithelial cells. J. Cell Biol. 125:583–594.PubMedGoogle Scholar
  22. Weber, E., Jilling, T., and Kirk, K. L. (1996). Distinct functional properties of rab3A and rab3B in PC12 neuroendocrine cells. J. Biol. Chem. 271:6963–6971.PubMedGoogle Scholar
  23. Zahraoui, A., Touchet, N., Chardin, P., and Tavitian, A. (1988). Complete coding sequences of the ras related rab 3 and 4 cDNAs. Nucleic Acids Res. 16:1204.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Haipeng Cheng
    • 1
  • Yushu Ma
    • 1
  • Xiaohua Ni
    • 1
  • Min Jiang
    • 1
  • Yao Luo
    • 1
  • Kang Ying
    • 1
  • Yi Xie
    • 1
  • Yumin Mao
    • 1
  1. 1.State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life ScienceFudan UniversityShanghaiPeople's Republic of China

Personalised recommendations